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op dinsdag 13 november 2018 om 15.45 uur
in de aula van de universiteit,

Boelelaan 1105

door

Robert Karl Altmann
geboren te Leiden



promotor: prof.dr. K.S.E. Eikema
copromotor: prof.dr. W.M.G. Ubachs





This thesis was approved by the members of the reviewing committee:

Marloes Groot (Vrije Universiteit Amsterdam)
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1Introduction

1.1 Spectroscopy and QED

The electronic energy structure of an atom or molecule below the ionization limit is
quantized, which means that it can only take on specific values in discrete steps, asso-
ciated with so called quantum states. To change from one quantum state to another
the energy difference is typically provided or taken away in the form of a photon.
By recording the response of a quantum absorber as function of the photon energy,
which is described by its frequency, a line spectrum is obtained. The experimental
interrogation of an absorber and the acquisition and study of the resulting line spectra
is called the science of spectroscopy. The characteristics of the lines in a spectrum,
such as the transition frequency or linewidth, provide information about fundamental
properties of the atom or molecule that is examined. This information can be used to
understand the system by comparing the experimental results with a theory or model.

The basic theory that describes the electronic energy level structure is quantum
mechanics, and spectroscopy has played an important role in its development over the
last one hundred years or so. An essential test subject for the development of the
theoretical framework was (and still is) the hydrogen atom, which due to its simplicity
(only one electron orbiting a single proton), allows for exact analytic solutions. One
of the first breakthrough’s towards the explanation of the observed line spectrum of
hydrogen was Bohr’s model for the atom, put forward in 1913 [1]. However, Bohr’s
model proved to be an incomplete description of the hydrogen atom as there were
certain discrepancies between the observed spectral features and the predictions made
by the theory, e.g. some lines were split into ”doublets”. It first took the development
of quantum mechanics by Schrödigner and Heisenberg and later the relativistic version
of quantum mechanics by Dirac in 1929 to explain these spectral features [2, 3].

With advances in spectroscopic methods the determination of energy levels in the
hydrogen atom became more precise, pushing the boundaries of the theoretical mod-
els. This resulted in a famous experiment by Willis Lamb and Robert Retherford in
1947 where they discovered an energy difference of 1 GHz between the 22S1/2 and
22P1/2 quantum states in atomic hydrogen [4, 5]. This so called ”Lamb shift” could
not be explained by the relativistic version of quantum mechanics as proposed by
Dirac. Instead it required a new mathematical framework and the incorporation of
electrodynamics into a new model now known as quantum electrodynamics theory or
QED [6, 7]. Predictions from QED included new physical phenomena such as the self
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energy of an electron and vacuum polarization. These contributions to the energy are
based on the possibility for an electron to emit and absorb a virtual photon, without
violating conservation laws if the process happens during a sufficiently short period of
time. Similarly, a pair of an electron and a positron can be created, which align them-
selves with the nuclear charge during their short lifetime. Both these effects become
manifest as a small shift in the electronic energy levels, and provides the explanation
of the observed Lamb shift. The calculation of level energies in QED theory is based
on a series expansion in terms of the fine structure constant α. By including higher
order terms, increasingly more complex processes are involved, even though there is
no definite reason to assume that the series eventually converges [8]. It therefore al-
ways remains the question if a higher order will make a significant contribution and
improvement to the level energy. In the early days of QED another inconsistency be-
tween quantum theory and experiment surfaced, which was the incorrect prediction of
the magnetic moment of the electron [9–11]. Also this deviation was quickly shown to
be explained by higher-order QED calculations [12, 13], thereby solidifying the validity
of the theory.

In the years after the discovery of the Lamb shift, spectroscopy on the 1S − 2S
transition (and other transitions in atomic hydrogen) formed the foundation of QED
tests in bound systems [14]. The mutual stimulation between experiment and theory
has resulted in the fact that today QED is arguably the best tested theory in physics
and a corner stone of the Standard Model.

The success of the theory is also nicely illustrated by the calculation of QED effects
up to tenth order resulting in an anomalous magnetic moment with an astonishing
precision of nine significant digits [15]. This level of accuracy is matched on the
experimental side and together lead to a determination of a considerably improved fine-
structure constant [16]. Moreover, independent determinations of the fine-structure
constant are in agreement with each other [16–18], but the most recent measurements
based on Bloch oscillations in Cs [19] actually deviates by about 2.5 sigma.

Experimental techniques improved so much that spectroscopic experiments on the
hydrogen 1S − 2S transition reached a fractional accuracy of 5 × 10−15 [20, 21]. By
combining this measurement with results of multiple optical transitions in hydrogen
(e.g. 2S − nS and 2S − nD transitions), physical constants such as Rydberg con-
stant can be determined. Currently, the uncertainty in the proton-charge radius
now dominates the theoretical evaluations, limiting the comparison between theory
and experiment [14, 22]. Traditionally the proton-charge radius is determined from
electron-proton scattering experiments [23, 24]. However, the analysis of these results
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is not trivial and is still being heavily debated [25]. Because the experimental accu-
racy exceeds the theoretical precision, such spectroscopic measurements can be used
to determine the proton-charge radius, under the assumption that QED (including
polarization effects) is correct and well enough calculated [14]. This procedure led to
a value for the proton-charge radius that is in agreement with the evaluation from
electron-scattering experiments [26, 27].

The status quo between experiments and theory was disrupted in 2010 when results
were published from a spectroscopy experiment based on muonic hydrogen [28], i.e.
hydrogen where the electron is replaced by a muon. The muon is about 200 times
heavier than the electron and therefore the extent of the wavefunction is much smaller.
The finite nuclear size effect scales with the overlap of the electronic wavefunction with
the nucleus, which makes the muonic hydrogen a much more sensitive probe (factor
106) of the proton-charge radius. Measurements on the 2S-2P transition in muonic
hydrogen resulted in a determination of the proton-charge radius that is ten times more
accurate compared to results achieved with electronic hydrogen [28, 29]. However, the
initially obtained value deviated by more than five standard deviations, which was
later reinforced by new measurements that indicated an even bigger difference, of
more than 7σ [30, 31]. According to the latest CODATA recommended values [32]
the difference between the electronic and muonic hydrogen measurements is 5.6σ (see
Fig. 1.1). This discrepancy is called the ”proton-charge radius puzzle” and to date
there has been no viable explanation for these results [33–35]. In fact, the puzzle was
again reinforced by measurements in deuterium where the difference r2(d)−r2(p) is in
agreement with the electronic- and muonic- atom determinations [36]. However, a very
recent measurement on the 2S-4P transition in electronic hydrogen obtained a value
for rp of 0.8335(95) fm, which is in agreement with the muonic rp value [37]. Then,
even more recently, a measurement on the 1S-3S transition in electronic hydrogen was
performed from which a value for rp of 0.877(13) fm was determined1 [38]. This value
is in perfect agreement with the CODATA recommended value, but deviates from
the muonic value by 2.8 standard deviations, which would again reinforce the proton
radius puzzle.

It is crucial that this conundrum is resolved because it could indicate new physics
beyond the Standard Model, much like the discovery of the Lamb shift led to the
development of QED. To tackle this problem novel experiments are required to gather
information and provide new input for the theoretical efforts. One suggestion for new
experiments is to make a similar comparison in singly ionized helium, to complement
the experiments on hydrogen with a different nucleus [46, 47]. From a theoretical

1Because this result is only available at the time of writing on the arXiv it is not shown in Fig. 1.1
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Figure 1.1: Overview of the proton radius puzzle. The proton radius extracted
from µ-hydrogen [28, 29] is much more accurate then the proton radius extracted
from spectroscopy on electronic hydrogen [14, 20, 27, 39–41] and they differ by a
combined 4.6 standard deviations (see [32]). The value for extracted from elec-
tronic hydrogen spectroscopy is supported by the value extracted from electron
proton scattering experiments [42], although their is much debate about the pre-
cise interpretation of these measurements [25, 31, 42–45]. The current CODATA
recommended value for rp is based on the scattering data and a selection of mea-
surements in electronic hydrogen [32]. This value differs by 5.6σ from the most
precise value extracted from µH spectroscopy. However, a recent measurement
on the 2S-4P transition in electronic hydrogen is in agreement with the muonic
value for rp [37]. The most recent published measurement with electronic hydro-
gen on the 1S-3S [38] (not shown in the graph) agrees again with the CODATA

value.

point of view this system has the benefit of being a two-body system with the added
advantage that the charge radius of the alpha particle is known ten times more ac-
curately from scattering experiments compared to the proton charge radius [25]. A
measurement on µHe+ has been conducted, and the evaluation of the results is nearing
completion. However, to make a direct comparison possible, spectroscopic measure-
ments on electronic helium are necessary, but that has so far not been demonstrated
due to the short wavelength, less than 60 nm, that is required to excite transitions from
the ground state [46]. Alternatively, one can look at the squared charge radius differ-
ence obtained with muonic 3He+ and 4He+, and compare this with the result obtained
by spectroscopy in the excited states of electronic helium [48–50]. Another possibil-
ity to determine to proton-charge radius is made possible by recent breakthroughs in
molecular-QED theory. These now indicate that it will become possible to resolve
the proton charge radius from sufficiently accurate spectroscopy of molecular hydro-
gen [51, 52], the benchmark system for molecular quantum theory and spectroscopy.
Also in this system, the required wavelength of ∼ 200 nm makes high-resolution spec-
troscopy difficult.

The motivation for the work presented in this thesis is to investigate the proton-
radius puzzle and search for new physics by exploring new methods and systems for
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precision spectroscopy that can be compared to theoretical calculations at the highest
level. To accomplish this goal we work towards spectroscopy of the 1S-2S transition in
singly ionized helium. While doing so, it became apparent that also molecular hydro-
gen is an interesting candidate for Ramsey-comb excitation to significantly improve
the accuracy of the transitions in the X-EF band, and thereby strongly improve future
comparisons with theory.

1.2 Ramsey-comb spectroscopy

The improvements in theory since the beginning of the 20th century have been matched
by an equal evolution on the experimental side to challenge the calculations. The ex-
perimental advancement has led to the development of numerous advanced techniques
such as narrow band laser sources, Doppler-free spectroscopy techniques, ion traps,
atomic-clocks and Ramsey’s method of oscillatory fields, for which numerous Nobel
prizes have been awarded. Especially the development of narrowband laser sources
sparked a revolution due to the increased resolution that could be obtained. In prin-
ciple the maximum amount of information that can be extracted from a spectroscopic
measurement is predominantly limited by the resolution and the available wavelength
range to probe transitions. While the measurement resolution progressed, spectro-
scopists faced a new problem with the extension from the radio-frequency domain to
the optical domain; the optical frequencies were too high to be counted by standard
electronic counters (for reviews see e.g. [53, 54]). Therefore a limiting factor in these
experiments was the accuracy in the determination of the frequency of the laser light.
The definition of the S.I. second is given in terms of the cesium ground state hyperfine
splitting of 9 192 631 770 Hz. The gap of several orders of magnitude between the S.I.
reference and the optical frequencies of a few hundred THz of the laser light proved to
be difficult to bridge [55]. It required a complicated and large setup called a frequency
chain which, in addition, could only be used for one particular frequency [55]. This
problem was solved far more elegantly in 1999 with the invention of the frequency-
comb laser which revolutionized the field of precision spectroscopy [56–58]. In 2005
T.W. Hänsch and J. Hall received the Physics Nobel Prize for their contributions to
precision spectroscopy and the invention of the frequency comb laser.

The output of a frequency-comb laser comprises of many (sometimes > 106) modes
that are phase-locked together. The position of each these modes in the spectrum is
referenced to a frequency standard such as an atomic clock. This forms a ”comb”
of modes where each mode can be determined with atomic clock precision. Because
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the modes interfere, this translates in the time domain to an infinite train of ultra-
short, high peak-intensity phase-locked pulses where the time separation is inversely
proportional to the frequency separation of the modes in the spectrum. There have
been significant developments of these devices over the past two decades to improve
stability, output power and available wavelength range [58].

Due to the available gain materials most frequency combs operate in the infrared
and near-infrared part of the spectrum. To enable the proposed experiments in He+

and H2, radiation at much shorter wavelengths is required, where no direct frequency
combs exist. One route to create short wavelength radiation is frequency up-conversion
through nonlinear optics, such as second-harmonic generation or high-harmonic gener-
ation in noble gases [59]. However, the pulse energy of a frequency comb is typically in
the nanojoule regime, which is orders of magnitude too low for efficient conversion in
nonlinear processes. The pulsed output of the frequency-comb can be amplified to the
microjoule regime using full repetition rate amplifiers or enhancement resonators [60–
62]. As an alternative route we use selective amplification in a nonlinear parametric
amplifier to amplify only two frequency-comb pulses. This method facilitates much
higher pulse energies (millijoules) which enables much more efficient nonlinear up-
conversion and excitation of weak multi-photon transitions [63]. Spectroscopy with
two frequency-comb pulses is similar to, but not quite the same as, a time-domain ver-
sion of traditional Ramsey spectroscopy [64, 65]. By scanning the time delay between
the two excitation pulses Ramsey-fringes can be recorded from which the transition
frequency is determined [63]. The effectiveness of this method was demonstrated in
2010 on a transition in neutral helium at 51 nm [66]. The transition was excited using
two consecutive amplified and upconverted frequency-comb pulses and resulted in a
precision of 6 MHz. Although this was a world record in this wavelength region, the
accuracy of the method was limited by the maximum pulse delay, and suffered from
spurious phase effects in the amplification process and subsequent high-harmonic gen-
eration. To overcome these limitations and reach even higher accuracy the method
was extended to the ”Ramsey-comb” spectroscopy technique which is introduced in
the next paragraph [67].

In the Ramsey-comb method the limitation of pulse delay and phase shifts are
circumvented by selecting and amplifying frequency-comb pulse pairs at different mul-
tiples of the original repetition time of the frequency-comb. It creates the ability to
record multiple Ramsey fringes at different time delays. This extension of Ramsey’s
method has several important consequences. First of all, the accuracy of the method
is greatly enhanced because the pulse delay can be increased, in principle only limited
by the lifetime of the excited state [67]. Secondly, a phase shift that affects all Ramsey
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1×Trep

Pulse pair selection

fm = fceo + mfrep

Time Frequency

Ramsey-comb measurement Reconstructed spectrum

Frequency-comb
output

N×Trep

Figure 1.2: Schematic overview of Ramsey-comb spectroscopy based on
frequency-comb pulses. At the top of the figure the pulsed output of a fre-
quency comb laser is shown together with its spectrum (with a direct Fourier
relation between the two). The spectrum is broad, but consists of many narrow
modes forming a ”comb”-like structure. In Ramsey-comb spectroscopy a pair of
pulses is selected to perform a Ramsey-type measurement. The spectrum of a
pulse pair is similar to the original spectrum, but instead of narrow modes it has
a sinusoidal modulation. By selecting pulse pairs at different time delays (or dif-
ferent modulation frequency in the frequency domain) multiple Ramsey fringes
can be measured at different delay times. Combining these measurements results
in a ”reconstructed” frequency-comb spectrum (in this case of a single transition)

and highly accurate spectroscopy.

signals in the same way does not influence the transition frequency determination, in
contrast to traditional Ramsey-spectroscopy where phase shifts lead to frequency er-
rors. This is a particular important feature because such phase shifts are e.g. induced
by the optical pulses that are used to excite the transition. This is not a problem
if frequency-comb pulses are used, but the well defined phase relation of the origi-
nal frequency-comb pulses is easily distorted by the amplification and up-conversion
process. In addition, the method is also insensitive to the AC-Stark shift induced in
the atoms of molecules by the intensity of the laser pulses themselves. Because the
light shift leads to a constant phase shift of the Ramsey signals, provided the excita-
tion pulse energy stays constant; therefore it is also simply eliminated by the analysis
procedure [68]. A final consequence of the Ramsey-comb method is that multiple
transitions can be excited simultaneously and resolved by evaluating the phase of the
Ramsey signals from the different delay times. A recording of multiple Ramsey signals
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in combination with analysis based on the phase of the multiple Ramsey-fringes to-
gether is called a Ramsey-comb measurement. The features mentioned before enable
ultra-high precision spectroscopy, restoring the spectral resolution that was initially
lost by using only two frequency-comb pulses. The method was initially demonstrated
in the infrared at 780 nm on rubidium and cesium atoms (see [67]). The combination
with mJ pulse energies results in a unique measurement system that can be used for
many other spectroscopic targets.

My thesis is based on extending Ramsey-comb spectroscopy to the deep ultraviolet
range of the spectrum with a demonstration in krypton and molecular hydrogen, with
the prospect of eventually measuring the 1S-2S transition in singly-ionized helium.

1.3 Outline of this thesis

This thesis is organized as follows: it starts in Chapter 2 with the discussion of the key
concepts of the Ramsey-comb measurements. In Chapter 3 the experimental setup is
presented in detail, with an particular emphasis on the issue of the influence of the
amplification process on the optical phase of the frequency-comb pulses that can po-
tentially lead to a frequency shift. In Chapter 4 we present the first Ramsey-comb
experiment at deep-ultraviolet wavelengths in krypton and demonstrate a more than
an order of magnitude improvement over previous measurements. Finally, in Chap-
ter 5 we present a measurement of the EF 1Σ+

g (v = 0, j = 1)← X 1Σ+
g (v = 0, j = 1)

transition in molecular hydrogen at 202 nm with a fractional uncertainty of 2.5×10−11.
This is a two orders of magnitude improvement over previous measurements and it
presents a major step forward for precision tests of QED with molecular hydrogen.
Chapter 5 also contains a short review about the experimental and theoretical devel-
opments concerning the determination of the dissociation energy (D0) of H2 in which
the EF-X transition plays an important role, and the relevance of this for the proton
radius puzzle and searches for new physics.
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2Frequency-comb laser and
Ramsey-comb spectroscopy

2.1 Introduction

Spectroscopic measurements have played an important role in the development of
the theoretical (quantum) description of matter over the past century. To meet the
demand for the ever increasing resolution and accuracy, many techniques for e.g. con-
trolling atoms and molecules (like laser cooling), excitation and detection have been
developed. One invention that revolutionized the field of frequency metrology is the
frequency-comb laser, which provides a phase coherent link between the radio fre-
quency and optical frequency domain, thereby enabling precise measurements of op-
tical frequencies. It also forms the basis for the Ramsey-comb method [69], a novel
spectroscopic method related to traditional frequency-comb spectroscopy (see e.g. [20])
and Ramsey’s method of separated oscillatory fields [65]. Besides the demand for ever
increasing precision, their is also much interest to probe transitions in the deep ul-
traviolet and beyond, a region of the spectrum inaccessible with standard lasers. To
enable spectroscopy in the deep ultraviolet, frequency upconversion techniques based
on nonlinear optics have to be used, which forms the next main ingredient for the ex-
periments presented in this thesis. This chapter starts by introducing frequency-combs
and the properties of its time and frequency domain representations. The next section
discusses some of the basics of nonlinear optics that is applied in the experiments. In
the last section the Ramsey-comb method and signal analysis is explained in detail.

2.2 Optical frequency combs

In the year 1999 the field of optical frequency metrology was revolutionized by the
invention of the frequency-comb laser [56, 70]. Until that time measurements were
hampered by the 105 frequency ratio between the optical domain and the microwave
transition at 9.2 GHz in Cs on which the SI second is based1, which could only be
bridged by elaborate frequency chains [55]. With frequency comb lasers precise fre-
quency determinations in the whole optical domain were possible [57, 71] with much

1The second is defined by the energy splitting between the two hyperfine levels of the ground state
of the 133cesium atom, corresponding to 9 192 631 770 oscillation periods of radiation

9
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less effort, which also almost immediately resulted in an order of magnitude improve-
ment in measurement accuracy [39, 58, 72]. In a very short period of time this tech-
nology was further developed to cover a larger wavelength range including the mid
and far infrared [73, 74], the THz regime [75] and later to the the deep UV, VUV and
XUV spectral range [76–80]. Besides the application related to frequency metrology,
frequency combs have been used for precise distance measurement [81] and cooling of
atoms and molecules [82, 83]. Also, frequency combs can assist in a practical applica-
tion of a time (frequency) standard based on optical transitions instead of microwave
transitions, which can potentially lead to a more accurate and stable definition of the
SI second [84–86]. Because frequency-comb technology provides control over the phase
evolution of the pulse train, it also opened the door for applications in attosecond sci-
ence [59].

The fundamental properties of a frequency-comb laser can be described in both
the time domain and the frequency domain, which are related to each other through
basic Fourier transforms. To understand how frequency combs can be utilized for
precision spectroscopy and Ramsey-comb spectroscopy it is important to understand
the characteristics in both domains and their intimate connection. This section is
devoted to describing the basic principles of a frequency-comb laser.

2.2.1 The frequency-comb laser

Frequency-combs are based on mode-locked lasers, a technique that was already de-
veloped in the early seventies of the last century [87, 88]. Mode-locking refers to
establishing a fixed phase relation between the longitudinal modes of a laser cavity
over a large range of frequencies [89]. In practice this is the result of a nonlinear mech-
anism that results in higher net gain for short pulses compared to continuous-wave
lasing. The mode-locking mechanism can either be an active element or be estab-
lished passively by some means of saturable absorption or Kerr-lensing. Passive mode
locking generally yields shorter pulses because the self adjusting mechanism becomes
more efficient if the pulse becomes shorter (up to a certain limit [90]). An example
of passive mode locking is based on a cavity with a semiconducter saturable absorber
mirror (SESAM) that provides higher losses for lower intensities (see [91] for operation
principle). Although this type of mode-locking does not generate the shortest pulses
possible, it is a robust and fairly easy way to realize picosecond pulses. This technique
is used in this thesis for the generation of 1064 nm picosecond pulses (see Chapter 3).

Another particular type of mode-locked laser that has been intensively studied is
the Kerr-lens mode-locked Ti:sapphire laser. The main reason that this material has
become so popular is the wide gain bandwidth which enables it to support ultra-short
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pulses. Based on this material pulses of only 6 fs duration have been demonstrated,
which is equivalent to a duration of less than two optical cycles [92–94]. In addition,
Ti:sapphire also provides the mode-locking mechanism (Kerr-lensing), making them
relatively easy to operate, build and control. The limit in pulse duration of this type of
mode locking is an interplay between the mode-locking mechanism, the group velocity
dispersion and the net gain bandwidth [95].

To be able to utilize these devices for precise frequency metrology purposes it is
important to understand the connection between the time and frequency domain rep-
resentation. A simple model to describe the time-domain output of a mode-locked laser
is that of a laser pulse circulating inside the cavity (for detailed textbook discussions
see [71, 91, 96]). Each time the laser pulse imparts on the output coupler a pulse is
emitted by the cavity, where the shape and characteristics of the pulse are determined
by the interaction with the elements inside the cavity. The time between the pulses is
determined by the optical path length in the cavity and the group velocity, resulting
in a train of laser pulses separated by the repetition time Trep. Dispersion inside the
cavity leads to a group velocity that is not equal to the phase velocity, giving rise to
the before mentioned carrier-envelope offset phase according to

∆φceo =
(

1
vg
− 1
vp

)
lcωc (2.1)

where vg and vp are the effective group and phase velocity, respectively, and lc is the
effective interaction length in the cavity, and ωc is the carrier frequency. This pulse-
to-pulse phase slip with respect to the pulse envelope has an important consequence
for the structure of the spectrum.

The spectrum of a single pulse emitted by a mode-locked laser is simply the Fourier
transform of its envelope function centered around the carrier frequency. Neglecting
the carrier-envelope phase shift for a moment, then the spectrum of a train of identical
pulses consists of an infinitely long equidistant set of frequencies that are separated
by the inverse of the pulse repetition time, forming a ’comb’ like structure. However,
since the carrier-envelope phase shift is not generally equal to zero, the influence of
the ∆φceo on the spectrum has to be carefully considered. In the time-domain the
electric field for a train of pulses can be described by [71]

Etrain(t) =
N−1∑
n=0

Ê(t− nTrep)ei(ωct−nωcTrep+n∆φceo) (2.2)

where Ê(t) is the (complex) envelope of a single pulse and N is the total number of
pulses. Assuming that the pulses are identical throughout the entire pulse train and
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Trep is constant, then the spectrum of a pulse train can be obtained by a Fourier
integral

Etrain(ω) =
∫ N−1∑

n=0
Ê(t− nTrep)ei(ωct−nωcTrep+n∆φceo)e−iωtdt (2.3)

This equation can be written in simpler form using the integral identity
∫
f(x −

α)e−iβxdx = e−iαβ
∫
f(x)e−iβxdx leading to

Etrain(ω) =
∫
Ê(t)e−i(ω−ωc)tdt

N−1∑
n=0

ein(∆φceo−ωcTrep)e−in(ω−ωc)Trep (2.4)

Before the summation sign we recognize the Fourier relationship between the pulse
temporal and spectral envelope centered around the carrier frequency. Using this and
rewriting the terms after the summation results in

Etrain(ω) = Ẽ(ω − ωc)
N−1∑
n=0

ein(∆φceo−ωTrep) (2.5)

The components that contribute to the spectrum are those for which the exponentials
in the sum add up coherently. The frequencies for which this is satisfied require a phase
between the consecutive pulses that is an integer multiple of 2π, which is equivalent
to ∆φceo − ωTrep = n2π. The frequencies in the spectrum can thus be written as

ωn = ∆φceo
Trep

+ n2π
Trep

(2.6)

Converting from angular frequency to ’normal’ frequency (f = 2πω) and introducing
the definitions for the repetition frequency frep = 1/Trep and carrier-envelope offset
frequency fceo = (∆φceo/2π)frep this equation can be written in the form of a simple
formula

fn = fceo + nfrep (2.7)

This is a well known equation that describes the time-averaged frequency domain
output and applies to all mode-locked lasers, and the distinction with a true frequency-
comb laser has yet to be made.

In Fig. 2.1 a schematic overview of the output of a mode locked laser in time
domain with the corresponding spectrum is given. The pulsed output corresponds to
a spectrum that comprises of many narrow modes where each frequency component
is separated from the previous by the repetition frequency according to Eq. 2.7. Also
according to Eq. 2.7 all the modes are shifted by the carrier envelope offset frequency
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Time0 1×Trep

φceo 2φceo

2×Trep

Frequency

fceo

fn = fceo + nfrep frep = 1/Trep

Figure 2.1: Illustration of the Fourier relation between the time and frequency
domain of a mode-locked laser. An infinite train of ultrashort pulses that are
equally spaced in time by the repetition rate Trep corresponds to a comb of
frequencies separated by the inverse of the repetition time, i.e. frep = 1/Trep.
A pulse-to-pulse phase shift (∆φceo) in the time domain, caused by a difference
between the group and phase velocity, shifts all the comb lines by an amount of
fceo = (∆φceo/2π)frep. When both the repetition frequency and offset frequency
are stabilized to a frequency standard these devices are called frequency-combs.

(fceo) which is related to the pulse-to-pulse phase shift. So the position of all the
frequencies in the spectrum is completely determined by just those two parameters,
frep and fceo. What is interesting is that these two parameters are typically in the
radio frequency domain whereas these lasers typically operate at optical frequencies
of several hundred THz. If both frep and fceo can be measured and stabilized to a
frequency standard, then these devices could be used as a phase-link between radio
frequency and optical frequency domains where direct frequency measurements were
previously very difficult. Concerning control over the repetition rate, this is a relatively
straightforward task and can be achieved by adjusting the cavity length using e.g. piezo
electric transducers (see also Section 3.2). The value of frep can simply be determined
using a counter and a photodiode to measure the pulsed output. Measuring the fceo
turned out to be a bigger challenge since a direct measurement is impossible due to
the absence of spectral intensity at that frequency (see Fig. 2.1) and the invention of
the f:2f nonlinear interferometer [57, 71]. This problem was solved in 1999 with the
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introduction of nonlinear optic fibers, which allowed generation of octave spanning
optical spectra with unamplified pulses from a mode-locked laser (see Section 3.2 for
more detail). The term frequency-comb is (usually) reserved for a mode-locked laser
that has the parameters frep and fceo measured and referenced to a primary time
standard, such as a cesium atomic clock. This may seem like a small improvement
over normal modelocked lasers, but controlling the large number of frequencies of the
comb spectrum has led to numerous new possibilities and applications especially in
frequency metrology.

2.2.2 Spectrum of two frequency-comb pulses

For the purpose of this thesis it is instructive to evaluate the spectrum of two pulses
in a little more detail. If (for simplicity) we assume a Gaussian pulse envelope with
FWHM duration of τt = 2

√
2ln(2)τ0 in the time domain, Eq. 2.2 can be transformed

to 2

Etrain(ω) = Eo(ω)1− eiN(∆φceo−ωTrep)

1− ei(∆φceo−ωTrep) (2.9)

where Eo(ω) = exp
(
− τ

2
0 (ω−ωc)2

2

)
is the spectrum of a single pulse with FWHM

∆ω = 2
√

2ln(2)/τ0. The spectral intensity is given by the square of the electric
field, resulting in

I(ω) = |E(ω)|2 = Io(ω) sin2 (N(ωTrep + ∆φceo) /2)
sin2 ((ωTrep + ∆φceo)/2)

(2.10)

For only two pulses N = 2, and this equation reduces to

I(ω) = 4Io(ω) cos2
(
ωTrep + ∆φceo

2

)
(2.11)

This equation shows that for two pulses the spectrum is the original spectrum of a
single pulse modulated with a cosine shaped amplitude. The period of the oscillation
is inversely proportional to the time separation between the two laser pules, as is
graphically depicted in Fig. 2.2. The top two graphs in this figure show the sequences
of two pulses separated by Trep and 4× Trep respectively. The corresponding spectra,
that are plotted on the right, show that for the second pulse sequence the mode
spacing is 4 times smaller, and therefore the resolution 4 times higher. In Fig. 1.2 it

2Using the solution of a standard series
N−1∑
n=0

xn =
1 − xN

1 − x
(2.8)
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Pulse sequence Spectrum
Add together

Add together

Figure 2.2: On the left side the temporal intensity of pulse sequences of two
pulses is plotted with on the right the corresponding spectra. The single pulse
spectrum determines the envelope (the dashed line) intensity of the spectrum
and for two pulses the spectrum is cosine modulated with a fringe period that
is inversely proportional to the repetition time. More pulses lead to sharper fea-
tures, so that eventually for an infinite pulse train the frequency comb spectrum

as depicted in Fig. 2.1 is recovered.

was shown graphically that a combination of several measurements at different pulse
delays can recover the original information of the frequency comb, despite the fact that
the spectrum of each two-pulse sequence looks like a cosine modulated continuum. In
the bottom part of Fig. 2.2 an intermediate case between 2 pulses and full repetition
rate is shown. The resulting spectrum starts to resemble a frequency comb much
more and in the limit of an infinite pulse train, the full (narrow mode) spectrum of a
frequency comb (Fig. 2.1) is recovered.

2.2.3 Spectroscopy with frequency combs

The development of the frequency-comb laser is rooted in the field of precision spec-
troscopy where the first ideas to use mode-locked lasers were already formed in the
1970s [88]. With the development of the self-referenced frequency-comb laser it has
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become possible to measure the frequency of a narrow band continuous wave (cw)
laser source by observing the beat note frequency between the cw laser and one of
the comb teeth. By tuning the narrowband laser over a resonance and monitoring
the beat, frequency the obtained spectrum could be calibrated with high precision.
However, in this process it is still necessary to determine the correct mode number m
for the absolute frequency calibration. This can be obtained straightforwardly if the
resonance is known with sufficient accuracy, i.e. if it is known more precise than the
repetition frequency of the frequency-comb laser. If this is not the case the correct
mode can be assigned by repeating the measurement at different repetition frequen-
cies and observing where all the frequency determinations coincide. This is the most
’traditional’ use of frequency-combs in high resolution spectroscopic experiments.

Instead of using the frequency-comb laser as a kind of ruler and measure the fre-
quency of a spectroscopy laser, it is also possible to use the frequency-comb pulses to
directly excite atomic or molecular resonances. Although the traditional method has
resulted in unprecedented measurement accuracy [20] it also requires an additional
(possibly expensive) ultra-stable spectroscopy laser. Especially in the deep ultravio-
let (and shorter wavelengths) these type of lasers are difficult to obtain or simply not
available, and other techniques are required. One approach to this problem is based on
direct excitation with comb pulses that are up-converted through nonlinear processes.

Direct frequency-comb spectroscopy is performed by exciting a resonance and scan-
ning the comb spectrum over the resonance. Control of frep and fceo gives the ability
to accurately scan the modes of the frequency comb laser. In such a measurement
the obtained spectrum is a convolution of the atomic or molecular response with the
spectrum of the frequency-comb, which can lead to complicated spectra if multiple
transitions are excited by different comb modes. Similar as in the generic application
of frequency comb lasers in spectroscopy, the resonances can be identified if they are
known with sufficient accuracy beforehand. If this is not the case then (again) this
ambiguity can be solved by repeating the measurement at different repetition rates.
Excitation with comb pulses directly offers several advantages. One notable benefit is
the peak power of the frequency-comb pulses which can be further enhanced to obtain
much higher peak power than is feasible with continuous wave lasers. This opens up
the possibility to frequency up-convert the comb pulses to the (extreme) ultraviolet
in nonlinear processes which are not efficient enough at the power levels of cw lasers.
These pulses can then be used to perform high-precision metrology measurements at
extreme wavelengths, provided that the amplification and non-linear conversion do
not compromise the phase coherence of the pulses [62, 66].
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The experiments in this thesis are based on exciting resonances in the deep ultra-
violet with a pair of amplified and frequency up-converted comb pulses. The basics of
the nonlinear processes involved can be found in Section 2.3 and the response of an
atom to a pair of frequency-comb pulses (which resembles a Ramsey-type experiment)
is detailed in Section 2.4.

2.3 Frequency upconversion and parametric ampli-
fication

One of the great things about pulsed lasers is that all their energy is concentrated into a
(very) short period of time. The laser pulses from e.g an oscillator based on Ti:sapphire
have an energy of roughly 10 nanojoule, and can easily be made shorter than 10 fs,
which results in a peak power of 1×106 Watts. Moreover, these pulses can be focused
to a spot size on the order of 1×10−8 m2 leading to a peak intensity of 1×1010 W/cm2.
Although this peak intensity in the focus is already quite high, the total flux is still
relatively low and in some cases insufficient to perform experiments. However, over
the past two decades the technology has been developed to amplify such pulses up to
the millijoule regime, making it feasible to obtain pulses with several terrawatt peak
power [97]. When such laser pulses are focused and propagate though media, high-
intensity effects (or non-linear effects) occur that can ordinarily not be observed. In
linear optics, light beams pass though optical materials without affecting each other,
in the non-linear regime this is no longer the case. Under the right circumstances these
effects can be exploited to, for example, create new frequencies using second-harmonic
generation. When such intense fields (typically 1 × 1012 W/cm2) propagate though
a medium the electrons in that medium become displaced due to the electric field of
the optical wave, inducing a polarization. This polarization can act as a source term
emitting these new frequencies which is described by the well known wave equation

∇2E(r, t)−
(n
c

)2 ∂2E(r, t)
∂t2

= µ0
∂2P (r, t)
∂t2

(2.12)

where c is the speed of light inside the medium, n is the refractive index of the medium,
µ0 is the magnetic permeability of free space and E and P are the real electric field of
the light and the induced polarization. The induced polarization contains the effects
of the light on the medium and vice-versa, it is what drives the wave equation and
contains both linear-optical effects and non-linear optical effects.

At low field intensities only linear optical effects, such as absorption and normal
refractive index, can be observed. The induced polarization is proportional to the
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applied electric field (of the laser) and can be written as

P (r, t) = ε0χ
(1)E(r, t) (2.13)

where ε0 is the permittivity of free space and the linear susceptibility χ(1) describes the
linear optical effects. If a lossless medium is assumed, then the soloution for the electric
field and polarization is given by E = E0 cos(ωt−k ·r) and P = ε0χ

(1)E0 cos(ωt−k ·r)
provided that ω = ck and c = c0/

√
1 + χ(1). Because in linear optics the wave equation

is linear, P drives the wave equation to produce light only with the frequencies that
are originally present in E, i.e. no additional frequencies are created. However, at
high-field intensities the induced polarization is no longer a simple linear function of
the electric field and more interesting things can happen. In this case the polarization
can be written as

P (z, t) = ε0

(
χ(1)E + χ(2)E2(z, t) + χ(3)E3(z, t) + . . .

)
(2.14)

where χ(n) is the nth order susceptibility which is a tensor of rank n+ 1. The second-
order nonlinear optical effects can be calculated using the description of an optical
pulse where an envelope function is superimposed on a continuous carrier wave; E(t) =
1
2 Ê(t)eiωct + cc. Here the the spatial dependence is omitted, and squaring the electric
field gives

E2(t) = 1
4 Ê

2(t)ei2ωct + 1
2 Ê(t)Ê∗(t) + 1

4 Ê
∗2(t)e−i2ωct (2.15)

This expression includes terms that oscillate at 2ωc, the second harmonic of the input
frequency, and a DC component due to optical rectification. It is also possible to have
more than one input beam, possibly at different frequencies, angles, and polarizations,
which can lead to many different processes and output beams. Suppose the electric
field of two pulses is given by

E(r, t) = 1
2 Ê1e

i(ω1t−k1·r) + 1
2 Ê2e

i(ω2t−k2·r) + cc (2.16)
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(a) (b) (c)

χ(2) χ(2) χ(2)

Figure 2.3: Simple graphical models of second-order non-linear effects: (a)
sum-frequency generation (b) difference-frequency generation and (c) parametric

amplification.

where the time and space dependence of the complex field amplitudes is omitted for
readability. Squaring this field results in

E2(r, t) =1
4 Ê1

2
e2i(ω1t−k1·r) + 1

4 Ê
∗
1

2
e−2i(ω1t−k1·r) + 1

2 Ê1Ê1
∗

+ 1
4 Ê2

2
e2i(ω2t−k2·r) + 1

4 Ê
∗
2

2
e−2i(ω2t−k2·r) + 1

2 Ê2Ê2
∗

+ 1
2 Ê1Ê2e

i((ω1+ω2)t−(k1+k2)·r)

+ 1
2 Ê
∗
1 Ê
∗
2e
−i((ω1+ω2)t−(k1+k2)·r)

+ 1
2 Ê1Ê∗2e

i((ω1−ω2)t−(k1−k2)·r)

+ 1
2 Ê
∗
1 Ê2e

−i((ω1−ω2)t−(k1−k2)·r)

(2.17)

The first two lines of this result are equal to Eg. 2.15, they describe the second harmonic
and optical rectification terms for the individual fields. The next lines show two new
components at ω1 + ω2 and ω1 − ω2 called sum-frequency generation and difference-
frequency generation respectively, and can be generated in new directions. Besides sum
and difference frequency generation it is also possible for a single pulse of frequency
ω3 to split up in such a way that ω3 = ω1 + ω2. This process, that also relies on
the second-order polarization term, is called parametric oscillation (or amplification if
ω1 or ω2 is present also at the input side). These second-order nonlinear effects are
graphically depicted in Fig. 2.3.

In the most complete case, i.e. for the interaction of three optical fields, the
behavior is described by a set of three coupled differential equations

∂Ê1

∂r
+ k

′

1
∂Ê1

∂t
− i

2k
′′

1
∂2Ê1

∂t2
= −iχ(2) ω1

2n1c
Ê3Ê∗2e

−i∆k·r (2.18a)

∂Ê2

∂r
+ k

′

2
∂Ê2

∂t
− i

2k
′′

2
∂2Ê2

∂t2
= −iχ(2) ω2

2n2c
Ê3Ê∗1e

−i∆k·r (2.18b)

∂Ê3

∂r
+ k

′

3
∂Ê3

∂t
− i

2k
′′

3
∂2Ê3

∂t2
= −iχ(2) ω3

2n3c
Ê1Ê2e

i∆k·r (2.18c)
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where ∆k = k3−k1−k2. This set describes second-order optical effects such as sum-
frequency generation and parametric amplification. Which one occurs depends on the
exact realization of the phase matching condition (∆ = 0), which will be explained
in a bit more detail later in this section. An analytic evaluation of these equations is
mathematically challenging, however, in certain cases simplifications can be made to
gain insight into some of the processes.

The problem can be made simpler by considering only the second-order nonlinear
polarization. Assuming the following conditions; an input pulse with a small band-
width that is centered around ω0, nonlinear effects are weak and hardly deplete the
fundamental field, only one signal field is considered, the field envelope of the light
pulse is varying slowly compared to the carrier frequency, uniform beams and no
diffraction, the electric field and the polarization have the same k-vector. Especially
this last condition is usually not satisfied and needs to be taken care of. Nonetheless,
under these conditions the wave equation reduces to (omitting the time and position
dependence and assuming a wave traveling in the z direction)

∂Ê

∂z
= −iµ0ω

2
0

2k0
P̂ ⇒ Ê = −iµ0ω

2
0

2k0
P̂ z (2.19)

This shows that the new field grows linearly with the propagation distance which means
that the intensity grows quadratically with distance. However, the generated wave is
usually at a completely different frequency and therefore sees a different refractive
index and as a result travels at a different phase velocity. The generated wave will
therefore move out of phase with the induced polarization and interfere destructively
with the new light that is created. To avoid this from happening the generated light
and the induced polarization need to have the same phase velocity, so they are phase
matched. To account for this effect we introduce a different k-vector for the induced
polarization, kp, which leads to an expression for the intensity after propagating a
distance L through the medium of

I(L, t) = cµ0ω
2
0

4 |P̂ |2L2 sinc2 (∆kL/2) (2.20)

where ∆k = k0 − kp . The sinc function has a maximum for ∆k = 0 so that optimal
nonlinear efficiency is maximized when the induced polarization and the light it creates
are in phase throughout the medium, i.e. phase matched. For the case of second-
harmonic generation the phase matching condition becomes k2 = 2k1 which can be
reduced to n(ω1) = n(2ω1). Most materials have dispersion and will therefore have
significant phase mismatch, so that over a very short distance (typically micrometers)



2

2.4. Ramsey-comb spectroscopy with frequency-comb pulse pairs 21

a significant phase difference is accumulated, leading to a low conversion efficiency.
It is possible to achieve phase-matching over much longer interaction lengths using
birefringent crystals. One such a crystal is β-barium-borate (BBO) which has a high
χ(2) coefficient and is now commonly used for efficient second-harmonic generation
and parametric processes. The experiments presented in this thesis rely on the use of
this type of crystal for the generation of deep ultraviolet radiation.

Besides frequency upconverion these crystals are also used for a process called
parametric amplification. In parametric amplification a ’pump’ photon is split in a
lower frequency ’signal’ photon and an even lower frequency ’idler’ photon, as described
earlier in this section. The indices for the beams in Eq. 2.18 are usually taken as p,
s, and i instead of 1, 2 and 3. To calculate the effects of parametric amplification,
in which three beams interact, the full coupled differential equations (Eq. 2.18) need
to be solved. However a few conclusions can already be drawn without resorting to
difficult calculations. The first is again that the phase-matching condition should be
satisfied, i.e. kp = ks + ki, for optimal efficiency. Also the efficiency of the energy
transfer depends strongly on the respective intensities of the beams. Moreover, it can
be shown that in the absence of dispersion (or for broad bandwidth phase matching)
the small signal gain factor scales exponentially with the propagation length. It is thus
feasible to obtain a gain of 104 with only a few mm propagation through a nonlinear
crystal with a high χ(2) such as BBO [98].

2.4 Ramsey-comb spectroscopy with frequency-comb
pulse pairs

The techniques described in the previous sections are combined and used to perform
Ramsey-comb spectroscopy experiments at ultraviolet wavelengths. In this section the
principle of the excitation method and the frequency determination from experimental
results is discussed. As the name Ramsey-comb spectroscopy suggests it is based on
a combination of Ramsey’s method of oscillatory fields with frequency-comb pulses.
In Ramsey’s method a quantum absorber, like an atom or molecule, is exposed to an
excitation field for two short periods of time, τ . The interactions with the excitation
field are separated by period, Tfree, where no field is present, in contrast to applying
a coherent field for the full duration of τ + Tfree + τ . The method was originally
proposed by N.F. Ramsey for transitions in the microwave regime in a molecular beam
experiment. He predicted that the resonance curves would be much sharper, leading
to a higher precision measurement [64]. Although the method was originally designed
for an atomic beam passing through two spatially separated regions, it can equally
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well be applied to atomic or molecular beams or techniques where the absorbers are
stationary (e.g. in ion traps) and the interrogation field is switched on and off in
a time sequence. Moreover, the signal obtained with Ramsey-spectroscopy is nearly
two times narrower than equivalent CW excitation of the same duration, enabling
higher resolution measurements. This Ramsey-excitation, or quantum-interference
metrology, has proven to be extremely fruitful and is now applied in many laboratories
around the world and most notably in cesium atomic clocks and other microwave
frequency standards.

In our application of Ramsey’s method, the phase evolution of an atom is probed
with two frequency-comb pulses that are separated by a time ∆t. In Fig. 2.4 a
schematic overview is depicted of the time evolution of two resonant laser pulses (top
part) interacting with a two-level quantum system (bottom part). The quantum sys-
tem is described by two eigenstates with energies Eg and Ee, that are separated by
an energy interval ∆E = Ee − Eg, and we assume all the population is initially in
the ground state. After interacting with the first resonant laser pulse, the quantum
absorber is in a superposition of the ground and excited state. This superposition will
evolve in time with a phase velocity ωtr = 2πftr and an initial phase that is deter-
mined by the phase of the driving field. This is schematically depicted in Fig. 2.4 by
the green trace in the lower part of the figure. Likewise, the second, time delayed,
resonant laser pulse adds a superposition amplitude, indicated by the purple trace.
For low excitation amplitude, one can say that the two superpositions of states will
interfere and depending on the relative phase of the two superpositions the excitation
amplitude is either increased or decreased. The probability of finding an atom in the
excited state after two such pulses is proportional to the absolute value squared of the
resulting amplitude, which is the quantity that can be observed in the measurements.
In the case of excitation with two phase-locked pulses the relative phase of the su-
perpositions is determined by the time delay between the excitation pulses and their
relative phase. If one has the means of adjusting the time delay of two such pulses
with sufficient resolution and accuracy, the quantum interference signal can be probed
as function of ∆t from which the transition frequency can be determined.

The probability of finding an atom in the excited state after applying a phase
coherent pulse pair with time delay ∆t is given by (see Appendix A)

|c2|2 = A0

2 {1 + cos (ω0∆t−∆φ)} (2.21)

With
A0 = 4 sin2(Ωτ) cos2(Ωτ) (2.22)
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Figure 2.4: Principle of quantum interference as a result of interaction two
phase locked laser pulses. A two level quantum system that is initially in the
ground state is excited by a resonant laser pulse creating a superposition of
the ground and excited state. The phase of the superposition is determined by
the driving field and will evolve with phase velocity ωtr = 2πftr = ∆E/2π~,
where ftr is the transition frequency. In similar fashion, the second time delayed
laser pulse also creates a superposition. Quantum interference (QI) between the
superpositions of states leads to an enhanced or decreased amplitude depending
on the relative phase. The absolute value squared of the amplitude is proportional
to the population in the excited state, which can be detected in an experiment.
With phase locked pulses the relative phase can be changed by adjusting the
delay time ∆t between the pulses which results in a sinusoidal signal with a

period inversely proportional to the energy difference between the states.

Here τ is the duration of the excitation pulses, Ω is the Rabi frequency which de-
pends on the electric dipole operator and the strength of the electric field (see Ap-
pendix A), ω0 is the angular transition frequency and ∆φ incorporates possible phase
shifts between the excitation pulses. Eq. 2.21 shows that the excited state population
oscillates with the energy difference between the states as function of the delay time
∆t. In Ramsey spectroscopy performed with two time delayed phase coherent pulses,
typically only a few oscillations of the quantum interference signal can be measured.
Nonetheless, based on Eq. 2.21 the transition frequency can be determined provided
that all possible phase shifts ∆φ are known with sufficiency accuracy and ∆t can be
controlled accurately. In fact, the uncertainty of the frequency determination is pro-
portional to the uncertainty in the determination for spurious phase shifts (δ(∆φ)),
and inversely proportional to the maximum time delay between the pulses that can



2

24

be achieved, i.e.
δ(ωtr) ∝

δ (∆φ)
∆t (2.23)

This means that for a longer time separation between the excitation pulses the fre-
quency can be determined more accurately, similar to traditional Ramsey spectroscopy.
In addition, the measurement becomes less sensitive to any uncertainties in ∆φ which
can be a limiting factor in these type of measurements. For the experiments discussed
in this thesis the phase shift ∆φ is of great interest and can be influenced by a number
of effects. One notable source of additional phase shift in the Ramsey signal when us-
ing frequency-comb pulses for the excitation is the carrier-envelope phase shift ∆φceo.
Moreover, the phase of the optical pulses can be modified by for e.g. the parametric
amplification process, in which case these phase shifts need to be determined very
carefully. Not only the excitation pulses can cause a phase shift of the measured Ram-
sey fringes, also a phase shift in the atomic phase can be present, e.g. the AC-Stark
(light-shift) appears as a shift of the measured Ramsey fringes and can influence the
frequency determination from such quantum interference measurement. If the single
pulse excitation amplitude becomes significant (leading to a population transfer of
more than a few %), then it is more appropriate to use the Bloch vector model to
describe the excitation process. However, the relative signal dependence on the time
delay from which the transition frequency is determined remains the same.

2.4.1 A Ramsey-comb measurement

In contrast to more traditional Ramsey-type spectroscopy, where only a single iso-
lated interference pattern can be recorded, Ramsey-comb spectroscopy enables the
acquisition of multiple Ramsey signals at different time intervals. These intervals are
separated from each other on a time scale that is orders of magnitude larger than
the time interval over which the Ramsey interference signals are probed. This seem-
ingly small extension of the original method leads to a significantly improved accuracy
but also requires a specialized framework for analysis of the obtained signals. Al-
though in a Ramsey-comb measurement signals are obtained as function of time, the
results can be described equally well in the frequency domain, which are related to
each other through their Fourier-transform relationship. In fact, many spectroscopic
measurements use the frequency domain representation as the basis for fitting and
extracting the relevant quantities such as transition frequencies. However, it turns
out that the frequency determination from a Ramsey-comb measurement can be done
better directly on the time domain signals (see Section 2.4.1). Nonetheless, it is still
very instructive to think about the frequency domain and understand the equivalence
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Figure 2.5: Schematic overview of the acquisition of a Ramsey-comb mea-
surement. By selecting frequency-comb pulses at multiples of the fundamental
repetition time a series of Ramsey-signals can be acquired. Each Ramsey sig-
nal is obtained by small adjustments of the repetition time over a timescale of
∼ 100 as. The delay between the individual Ramsey signals, i.e. the repetition
time of the frequency-comb, is orders of magnitude larger on the timescale of
∼ 10 ns. These signals are combined afterwards to form a Ramsey-comb mea-

surement and analyzed together.

between the time and frequency domain pictures. Therefore we first give a qualita-
tive analysis of the signals from a frequency domain perspective and then continue to
explain the details of analyzing Ramsey-comb signals in the time domain.

To perform a Ramsey experiment using frequency-comb pulses, first a pulse pair
from the comb laser output need to be selected (see Chapter 3 for detail of the practical
implementation). Then, as discussed in the previous section, interference ’fringes’
in the excitation probability can be obtained by adjusting the relative phase of the
excitation pulses, which can also be achieved through small adjustments of the pulse
delay time ∆t, see Eq. 2.21. In practice this is realized by adjusting the original
repetition time (Trep ≈ 8 ns) of the frequency-comb laser through tiny steps (δt ≈ 5 fs),
i.e. ∆t = Trep + δt 3. By selecting pulse pairs from the frequency-comb output at
different multiples of the original repetition time and adjustments on the timescale
of δt, multiple Ramsey-interference fringes can be recorded, as shown schematically
in Fig. 2.5. The frequency-comb laser provides an absolute calibration of the pulse

3It should be noted that δt actually depends on the harmonic order that is used in the experiment.
E.g. a 6 fs time step corresponds to 625 as for a two photon transition at the 4th harmonic of the
original comb output.



2

26

time delay for the Ramsey measurements, and all individual scans combined form a
Ramsey-comb measurement, see the bottom graph in Fig. 2.5.

Looking at it first in the frequency domain, something similar to a spectrum can be
obtained by taking the direct Fourier transform (DFT) of the signals combined after
adding the signals of the individual Ramsey scans, as shown in Fig. 2.6. The most
notable feature of this ”spectrum” is the reiteration of the spectral features, much like
signals from traditional direct frequency-comb spectroscopy. This is caused by the
sub-sampling of the Ramsey measurements, and as shown in the figure, the distance
between the spectral features is inversely proportional to the spacing of the Ramsey
measurements at Trep. The second striking feature is that the overall width of the
spectrum is inversely proportional to the width of a single Ramsey measurement 4.
Finally, the width of the spectral features is inversely proportional to the maximum
delay time over which the transition is probed. This is a graphic representation of the
fact that the measurement becomes more accurate if the transition can be probed over
longer time delays.

Although the spectrum of a Ramsey-comb measurement is very similar to a spec-
trum obtained by more traditional direct frequency-comb spectroscopy, there are fun-
damental differences. In full repetition rate frequency-comb spectroscopy the excited
state population is accumulated coherently over many pulses and the spectrum can be
thought to be the result of scanning the comb modes over the resonances. In contrast,
in Ramsey-comb spectroscopy one is probing the excited state after each pulse pair and
later reconstructing the spectrum. This subtle difference leads to crucial consequences
for the interpretation of the spectrum.

When only a single transition is probed this difference is not apparent, but when
multiple resonances are excited at the same time interference between the spectral
components influences the position of the transitions when the spectrum is calculated.
This complicates fitting with often already arduous lineshape models. These issues
can be circumvented by performing the analysis on the time domain signals directly
as the information on the transition frequencies and their relative strength is encoded
in the phase of the Ramsey signals (see Section 2.4.1) [68].

Ramsey-comb signal analysis

The time domain signals in a Ramsey-comb experiment, as depicted in Fig. 2.5, can
be described by optical Ramsey interference fringes in combination with a repeating

4Note that this figure is not a simulation of a true Ramsey-comb measurement, in a measurement
with 100 as long Ramsey measurements the overall width compared to the spectral feature is much
larger, and many more than just five recurrences are observed
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Figure 2.6: Illustration of a spectrum obtained from a Ramsey-comb mea-
surement by Fourier transformation of the original data. The recurrence of the
transition is caused by the sub-sampling of the Ramsey measurements and are
spaced inversely proportional to Trep. The overall width of the spectrum is
inversely proportional to the duration of the individual Ramsey scans and the
width of the spectral features is determined by the maximum time delay (NTrep)

at which the transition is probed.

rectangular windowing function:

SRC = Sr(ftr, Atr,∆t,∆φ)× Fw(δt,∆N,Trep) (2.24)

The first term that describes the optical Ramsey fringes is given by Eq. 2.21 which
can be extended to the case of multiple resonances as

S̃r(fn, An,∆t,∆φ) =
N∑
n=0

Ane
−i(2πfn∆t+∆φ) (2.25)

where the complex notation is used and the constant offset is omitted since the ob-
tained Ramsey signals can be scaled in arbitrary way without affecting the frequency.
Although Eq. 2.24 can be used to fit the obtained Ramsey signals directly, this method
suffers from the periodicity in the signal and coupling between fitting parameters.
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Figure 2.7: Visualization of time and phase evolution for a given spectrum,
using low frequencies in the Hz range to illustrate the effects which in reality
take place with optical frequencies. In the top row (Fig. a) the time and phase
evolution of a signal frequency of 5 Hz are plotted. The phase evolution of
Fig. b and c are plotted relative to the signal of Fig. a which is indicated by
the orange trace in the frequency domain representation. In Fig. a and b only
a single frequency is present in the signal leading to a phase evolution that is
a straight line as function of time. In Fig. c multiple frequency components of
different strength are present leading to complex evolution of the time and phase

evolution.

Therefore a fitting model was developed that is based only on the phase of the ob-
tained Ramsey-signals.

The evolution of the phase of a signal composed of different frequency components
is graphically visualized in Fig. 2.7. The first figure in each row depicts a spectrum,
the next two figures are the corresponding time domain signal and (relative) phase
evolution. The top row (Fig. 2.7a) is an example of a spectrum that contains only
a single frequency at 5 Hz. This leads to a straightforward oscillation in the time
domain and a phase evolution that increases linear with time, and this signal will later
be used as a reference. Similar, in the next row (Fig. 2.7b) a spectrum containing a
single frequency at 5.5 Hz is considered (to enable a comparison the spectrum from
Fig. 2.7a is also plotted in orange). But this time, instead of the absolute phase
evolution, the phase evolution relative to the reference in Fig. 2.7a is plotted in the last
column. The slope of the differential phase evolution is determined by the frequency
difference between the signal and reference frequency. The situation can be made more
complex by introducing additional frequency components of different relative strength
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as depicted in Fig. 2.7c, where three different frequency components are present. The
time evolution has now become a complex pattern caused by the beating between the
different frequencies. Moreover, the phase evolution (which is again plotted relative
to the reference in Fig. 2.7a) is no longer a straight line but also a complex function of
time. Nonetheless, all the information about the frequencies and their relative strength
is encoded in this phase evolution (modulo the periodicity at the distance of 1/Trep).
It is precisely this phase evolution that is probed during a Ramsey-comb measurement.
From each individual Ramsey measurement the phase can be extracted, relative to the
reference frequency, thereby sampling the phase evolution as indicated by the open
circles in Fig. 2.7c 5. The picture above is not a full representation for excitation of
multiple transitions, because in the optical measurements the frequencies are on the
order of hundreds of THz, while the excitation frequencies are typically frep or less
apart. So one observes phase deviations with what is essentially an effective optical
carrier frequency. It should also be noted that the description above of excitation of
multiple transitions at the same time assumes that these transitions are independent
(e.g. exciting different isotopes). In other cases it might still be treated effectively
like that because the only the phase evolution difference for different time delays is
recorded. However, this needs to be checked for each experiment as potentially a more
elaborate analysis is required to account e.g. for coherent effects between states.

The procedure to determine the frequency from a Ramsey-comb measurement is
graphically depicted in Fig. 2.8. In this example, data from a real Ramsey-comb
measurement in molecular hydrogen is presented where only one resonance is excited,
and the blue data points are the measurement results with the accompanying statis-
tical uncertainty. In total there are ten Ramsey measurements at regular intervals,
indicated by the T0 value, where each time a measurement is performed over two oscil-
lation periods of the atomic resonance, corresponding to a pulse time delay variation of
600 as. In addition also a reference frequency, that is chosen to be as close as possible
to the transition frequency, is plotted as the green trace in Fig. 2.8a. Then for each
individual Ramsey measurement the phase difference (∆Φ) with respect to the refer-
ence frequency is determined. This is achieved by fitting the Ramsey measurements
separately with a cosine function with a fixed frequency but variable phase ∆φfit, i.e.

f(∆t,∆φ,A) = A · cos (2πfref∆t+ ∆φfit) (2.26)

This ”fixed frequency” fit is illustrated in Fig. 2.8a by the red line through the data
points. The obtained phases are then compared to the phase of the reference frequency

5The frequency that is probed in a Ramsey measurement is much higher then depicted in Fig. 2.7.
The Ramsey measurements are separated much further compared to the oscillation period
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(a)

(b)

Figure 2.8: Visualization of the fit procedure based on the phase of the mea-
sured Ramsey signals. The measured Ramsey signals (blue data points) are fitted
individually with a fixed frequency to determine a relative phase for each Ramsey
measurement. The continuous evolution of the reference frequency (plotted in
green) is compared to the obtained phases, plotted in the bottom figure. Mini-
mization of the phase difference between the reference and measured phases as
function of frequency (and amplitude) constitutes a least square minimization
problem and can be solved by standard fitting algorithms. In the bottom fig-
ure the results for the phase difference of the first guess are plotted in purple.
The result of the fitting procedure, i.e. minimization of the phase difference, is

plotted in orange.

which is plotted in green below the experimental data in Fig. 2.8a, resulting in a
value for ∆Φ for each Ramsey measurement as indicated by the two purple arrows
in Fig. 2.8a. This results in a phase evolution as function of delay time, ∆t, which
is plotted as the purple line in Fig. 2.8b. The frequency of the Ramsey-comb signal
can then be obtained by minimizing the phase difference as a function of time. The
phase difference between the Ramsey-comb measurement and the reference signal can
be expressed as

∆Φ = φfit(A1, A2, ..., An, f1, f2, ..., fn,∆φc,∆t)−∆φref
= φfit(A1, A2, ..., An, f1, f2, ..., fn,∆φc,∆t)− 2πfref∆t

(2.27)

where An and fn are possible frequency components and their relative strength. In
addition, the possibility of a constant phase shift (∆φc) is implemented that shifts all
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1/5Trep

Figure 2.9: Spectrum of the measured Ramsey signal. Although the frequency
determination is done completely on the time domain signals, this illustrates
the ambiguity of the sub sampling of the Ramsey signal. In this case Ramsey
measurements were done separated by five times the fundamental repetition time

Trep. As a result the frequency can only be determined modulo frep/5.

the Ramsey signals by the same amount. The minimization of the obtained phases
from the Ramsey-comb measurement compared to the reference signal constitutes a
χ2 minimization problem. As long as the number of parameters, i.e. frequencies and
their respective amplitudes, is lower than the number of obtained Ramsey signals a
solution can be obtained by standard least-square fitting algorithms. The result of the
fitting procedure as plotted in the orange trace in Fig. 2.8b.

The described procedure assumes that the phase difference between the measured
phases and reference signal is caused only by the difference of the reference frequency
with respect to the actual transition frequency. However, e.g. the phase of the Ramsey-
comb measurements can be influenced by various effects such as e.g. the carrier-
envelope phase shift of the frequency-comb pulses, or phase shifts due to the parametric
amplification process. Such effects have to be carefully analyzed or measured to ensure
that the transition frequency is not shifted (see Section 2.4.1). In the case of ∆φceo
this is relatively straightforward because it is measured and stabilized so that the data
can be corrected for this afterwards.

As mentioned earlier, similar to generic frequency-comb spectroscopy the sub-
sampling of the phase trace leads to an ambiguity in the frequency determination.
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In the example presented in Fig. 2.8, the Ramsey fringes were measured with a
time separation of ∼ 40 ns, which corresponds to 5 times the fundamental repeti-
tion time. Therefore, in this instance, the frequency can only be determined modulo
1/(5Trep) = frep/5, this is also visualized in Fig. 2.9 where the Fourier transform of the
data in Fig. 2.8a is plotted. This ambiguity can be solved if the transition frequency
is known precisely enough from previous measurements, or by measuring at different
repetition times of the laser. In this particular example measuring Ramsey signals
closer together, at e.g. an interval of 1×Trep, would already improve the resolution if
needed.

One advantage of performing the analysis purely on the phases of the time domain
signal is that the fitting procedure does not require any knowledge about the possibly
complicated lineshape in the frequency domain. In a Ramsey-comb measurement
the lineshape is further complicated by interference if multiple transition are excited
simultaneously. Also, the phase is relatively robust against changes in signal strength,
and the insensitivity to common phase shifts also means that the AC-Stark (light)
shift is strongly suppressed, which is discussed in more detail in the next section.
More detail and a quantitative analysis of the performance of the fitting algorithms
can be found in reference [68].

The influence of phase shifts and broadening mechanisms

In the previous section in Eq. 2.27 the possibility of a constant phase shift was intro-
duced. That a constant phase shift does not influence the result of a Ramsey-comb
measurement can be understood by substituting ∆φ = ∆φc into equation Eq. 2.25,
and considering a single resonance, which results in

S̃r = Atre
−i(ωtr∆t+∆φc) (2.28)

Straightforward Fourier transformation shows that the frequency is unaffected by this
additional phase factor which is visualized in Fig. 2.10. The fact that identical spectra
are obtained for the two traces in the top left graph in Fig. 2.10 is a fundamental
difference with traditional Ramsey spectroscopy where only a single isolated Ramsey
measurement is performed, and the assumption is made that for a delay of zero also
the phase of the signal is zero. In that case a phase shift of the Ramsey fringes is
interpreted as a frequency shift and must therefore be precisely calibrated.

In the experiments presented in this thesis the parametric amplification process
changes the initial phase of the frequency-comb pulses. Therefore this needs to be
carefully measured and accounted for if only a single Ramsey fringe is measured,
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Figure 2.10: Visualization of the effect of a constant phase shift, time-
dependent phase shift and a time-dependent decay of contrast on a Ramsey
comb measurement. On the left time domain signals are plotted and on the

right in the corresponding color the effect in the frequency domain.

which has been a source of significant uncertainty in previous experiments (see [63]).
However, by measuring multiple Ramsey signals at different delay times, the absolute
phase shift no longer matters, only the stability of the phase as function of time delay
is important and needs to be verified (see [67]). The cancellation of common phase
effects is a big advantage of the Ramsey-comb method because some systematic effects
appear as a constant phase shift (under the right circumstances). Another example is
the AC-Stark shift. Due to the intensity of the excitation pulses the energy levels are
temporarily shifted, leading to a phase shift of the Ramsey-fringe that is proportional
to the excitation energy. But if the energy of the excitation pulses is kept constant
as function of delay time, then this phase shift is common to all Ramsey fringes and
drops out of the analysis.

In contrast to a constant phase shift, a delay time dependent phase shift does
influence the extracted frequency. The most simple case is a phase shift that is linear
with respect to the delay time, i.e. ∆φ = ∆φc∆t. Inserting this into equation Eq. 2.25
and for simplicity limit the case to only a single transition gives

S̃r = Atre
−i((ωtr+∆φc)∆t) (2.29)

Again Fourier transformation tells us that the extracted frequency is shifted propor-
tional to the additional phase and cannot be disentangled from the signal, see Fig. 2.10.
Potential phase shifts that have a time dependence therefore need to be carefully an-
alyzed because they lead to a systematic shift of the measured frequency.
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Just like other spectroscopic techniques the Ramsey-comb method is influenced by
line broadening mechanisms. For example, in a Ramsey-comb measurement the broad-
ening due to the finite lifetime of the excited state manifests itself as an exponential
decay of the signal amplitude, see bottom left graph in Fig. 2.10. Other mechanisms
that influence the Ramsey comb signal are the finite linewidth of the laser, the limited
transit time in an atomic beam experiment, wave front curvature and Doppler broad-
ening. All these mechanisms affect the amplitude and contrast (modulation depth) of
the measured signal, and not necessarily as an exponential decay. However, the phase
determination of the individual Ramsey scans is not hampered by them. However,
there can still be a systematic phase shift, e.g. from a residual Doppler effect, which
has to be taken into account just like with other spectroscopic methods.
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3The Ramsey-comb setup:
from a frequency-comb laser
to a high-intensity
phase-stable pulse pair

3.1 Introduction

The development of the frequency-comb laser [56, 70] has revolutionized applications
in the field of precision frequency metrology and fundamental tests by enabling the
measurement of optical frequencies. In addition, frequency-comb lasers are an impor-
tant tool for other fields of physics, such as attosecond science, quantum control and
molecular dynamics. For many purposes the typical output (in the form of nJ-level
pulse energy, or nW-level mode power) of a frequency-comb laser is sufficient, but for
some applications it is desirable to increase the available pulse energy. In particular
when one wants to extend the available wavelength range using nonlinear conversion
techniques, to the extreme- and deep ultraviolet for ultra-high precision spectroscopy.
This is desirable because ground state transitions of simple atoms (H, He, He+) and
molecules (H2) lie in this spectral range, which can be used to perform precise tests
of fundamental theory such a quantum-electrodynamics (QED).

The availability of laser gain materials dictates that frequency-combs (typically)
operate in the near and infrared spectral regions. Techniques such as second-harmonic
generation or high-harmonic generation provide a route to operate these devices at
shorter wavelengths. The pulse energy can be increased for this using enhancement
cavities for intra-cavity high-harmonic generation [60–62] or by full repetition rate
amplifiers [61, 99]. The downside of these techniques is that the maximum pulse
energy can only be increased to several microjoules. An alternative approach is based
on selective amplification of pairs of frequency comb pulses at a much lower repetition
rate yielding a pulse energy of several millijoules, orders of magnitude more [97, 100].
A drawback in this case is that the spectral resolution seems to be severely limited
as shown in Fig. 1.2. However, with the Ramsey-comb technique (see Chapter 2) this
issue is circumvented and the resolution of the original comb is recovered.

As described before, a spectroscopic experiment performed with only two frequency-
comb pulses resembles a Ramsey-type experiment. In this case it is crucial that the

35
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pulse to pulse phase shift is exactly known, because otherwise it leads to a systematic
frequency shift. Originally the laser system was designed to only support the am-
plification of two consecutive pulses [66, 100]. This limited the accuracy due to the
constrained time delay between the excitation pulses and the requirement to know the
absolute phase difference. Although the pulse to pulse phase shift is known for the ini-
tial frequency-comb pulses, it is changed in the amplification process. To tackle these
issues the laser system was upgraded to support amplification of frequency-comb pulse
pairs at multiples of the original repetition time to perform Ramsey-comb spectroscopy
(see Chapter 2).

The complete laser system that produces a phase-stable amplified frequency-comb
pulse pair is called the Ramsey-comb laser system, see Fig. 3.1 for a schematic overview
of the main components. A mJ pulse pair is created by parametric amplification of
the frequency-comb. Experimentally, this requires a well controlled high-energy pump-
pulse pair that is synchronized with the frequency-comb laser. These pump pulses are
produced by a Nd:YVO4 oscillator operating at 1064 nm wavelength, from which a
pulse pair is selected using fast modulators at a repetition rate of 28 Hz. These pulses
are amplified in a ’bounce’ amplifier [101, 102] and a subsequent post amplifier to a
pulse energy of 28 mJ. They are then frequency doubled to 532 nm wavelength and used
to pump the non-collinear optical parametric chirped pulse amplifier (NOPCPA). The
seed pulses for the NOPCPA are generated by a Ti:sapphire based frequency-comb
that operates around 800 nm with a bandwidth of approximately 100 nm. Before
seeding the NOPCPA, the pulses are lengthened in time (by applying second-order
dispersion in a grating-based stretcher, and spectral clipping in this stretcher) to have
optimal temporal overlap with the pump pulses in the NOPCPA. In addition, a setup
to measure the relative phase between the amplified and original frequency-comb pulses
is implemented to ensure phase stable operation of the NOPCPA.

In this chapter all the components of the Ramsey-comb laser system are described
in detail. In the last section the phase measurement setup is discussed in combination
with experimental results. Because the phase plays such an important role in the
frequency determination extra emphasis is put on this section.

3.2 The frequency-comb laser

The hart of the experiment is formed by a home-built frequency-comb laser, see Fig 3.2
for a schematic overview. The frequency-comb laser is based on a Ti:sapphire Kerr-
lens mode-locked oscillator that produces a pulse train with a repetition frequency of
126 MHz. The Ti:sapphire crystal is pumped by 5.0-5.25 W of 532 nm light delivered
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Figure 3.1: Schematic overview of the Ramsey-comb laser setup. Pulses from
a frequency-comb laser are amplified in a non-collinear optical parametric am-
plifier. The pump pulses are derived from a synchronized amplified Nd:YVO4
oscillator. The frequency-comb is referenced to an atomic-cesium clock to pro-
vide absolute frequency calibration. In addition, a phase-measurement setup

monitors the effects on the phase due to the parametric amplifier.

by a commercial Coherent Verdi V-10 laser system. The oscillator has a linear cavity
design where one end mirror of the cavity is formed by a 85 % reflective output coupler.
The other end mirror is mounted on a translation stage to allow coarse adjustment of
the repetition rate of the laser, and in addition two folding mirrors and two strongly
focusing mirrors are implemented leading to a cavity length of 2.4 m. To sustain mode-
locking over a large bandwidth, the group velocity dispersion in the cavity needs to
be compensated, this is achieved by using chirped mirrors. The specific choice of
mirror characteristics gives a degree of control over the center wavelength and spectral
width (related to the pulse duration) of the output spectrum. To accommodate the
experiments presented in this thesis the frequency-comb laser was modified to produce
the two different output spectra shown in Fig. 3.3. In both cases the average output
power is ∼700 mW which corresponds to a pulse energy of 5.5 nJ. To operate the mode-
locked Ti:Sapphire laser as a frequency-comb both the repetition frequency and the
carrier-envelope offset frequency (see section 2.2.1) need to be stabilized and referenced
to a primary time standard such as a atomic cesium clock.

The repetition rate of the laser is the most straightforward parameter to stabilize,
and this is achieved by adjusting the cavity length through a voltage on a piezoelectric
transducer on which one of the mirrors is mounted (see Fig. 3.2). The repetition rate
is measured by detecting the pulse train with a 10 GHz bandwidth fast photo-diode
(Electro-Optics Technology EOT4000). Then the 76th harmonic of the fundamental
(126 MHz) is mixed with the output of a stable frequency generator at 9.7 GHz
(Agilent PSG-L E8241A). The higher the locking point, the smaller the arm to the
optical domain, and the more tightly the comb modes can be locked. However, the
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Figure 3.2: Schematic overview of the Ti:sapphire oscillator and f : 2f mea-
surement setup. A Coherent Verdi V-10 laser pumps the Ti:sapphire cystal with
5.25 W of 532 nm. The crystal is placed at Brewsters angle between a dispersion
compensated curved mirror pair. One end-mirror is glued on a piezo-electric
transducer to allow active feedback on the cavity length, while the other end-
mirror is formed by an 85 % reflective output coupler (OC). A pair of wedges is
inserted for coarse control of dispersion in the cavity. About 25 % of the out-
put is split off and coupled into a photonic crystal fiber (PCF) for continuum
generation in the f : 2f setup to measure the fceo frequency. The fceo is com-
pared to the 10 MHz output of an cesium atomic clock and actively stabilized
via the pump-laser intensity which is adjusted through an acoustic optic mod-
ulator (AOM). (APD) Avalanche Photo Diode, (TS) Translation Stage, (BBO)

β-Barium Borate crystal, (IF) Interference filter.

generator is more noisy at higher frequencies, so a locking point at 9.7 GHz is a
compromise between both effects. The frequency generator is phase locked to the
10 MHz output of a cesium atomic-clock (Symmetricom CsIII 4310B) to provide an
absolute frequency reference for the repetition rate. Control of the repetition rate
through the 10 GHz frequency generator is undesirable because of a dead time in the
output that occurs between two different frequency settings. Therefore the beat signal
is offset by ∼28 MHz. This 28 MHz difference frequency is then mixed with the output
from a direct digital frequency synthesizer (DDS) board (AD9912, Analog Devices)
which is also referenced to the atomic cesium clock. The resulting difference frequency
is used as the error signal in a PID feedback loop that controls the voltage of the
piezoelectric transducer. In this configuration the repetition rate can be adjusted in
steps of µHz by setting the frequency of the DDS and keeping the frequency of the
10 GHz generator at a fixed value.

Control over the carrier-envelope offset frequency (fceo) is not straightforward be-
cause the laser output does not contain any intensity at frequencies close to zero, and
it can therefore not be measured directly. This problem has been solved by the f : 2f
technique [56, 70], in which the carrier is frequency doubled (time domain view point),
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Figure 3.3: Output spectra of the Ti:sapphire frequency comb for two different
sets of dispersion compensating mirrors. By changing the dispersion characteris-
tics of the mirrors inside the cavity the output spectrum can be shifted. The red
curve shows the spectrum that was used for the experiments on krypton (see 4),
while the blue spectrum was used for the molecular hydrogen experiments (dis-

cussed in Chapter 5).

corresponding to sum frequency of the modes (in the frequency domain), leading to
light at frequencies of fm = mfrep + 2fceo (see Eq. 2.7). If the spectrum of the os-
cillator spans a full octave then the modes obtained by sum-frequency mixing can be
compared in an interferometer to modes at the high frequency side in the original
comb light close to the upconverted comb. The resulting beat signal between these
modes contains the difference frequency which is equal to fceo. The beat signal will
also contain other components due to interference between different modes but these
can be filtered out electronically. Experimentally it is difficult to create a mode-locked
laser that has an output spectrum spanning a full octave. Instead, the high peak
intensity of the short pulses can be used to induce non-linear interactions to broaden
the original spectrum. This can be achieved in photonic crystal fibers which are fibers
that have a lattice of air holes around the core. This structure can then be engineered
such that the group-velocity dispersion is zero near the central wavelength of the pulse
so that the pulse remains short and intense over an interaction length of many cm.
Due to the long path the spectrum can be broadened sufficiently, leading to a so called
super-continuum that can easily span the required octave for the f : 2ftechnique.

The implementation of the f : 2f technique in our experiment is shown in Fig. 3.2.
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About 25 % of the oscillator output is split off and injected into a photonic crystal
fiber of 16 cm length and 2 micron core diameter to create an octave spanning spec-
trum. The low frequency part of the spectrum is then ’doubled’ in a BBO cyrstal and
compared to the high frequency frequency part in a Michelson interferometer geome-
try. The beat signal is recorded with a avalanche photo-diode (Analog Modulus Inc.
712-A) and electronically filtered to extract only the fceo.

The carrier-envelope offset frequency is related to the pulse-to-pulse phase slip
(∆φceo) through fceo = (∆φceo/2π)frep. The pulse-to-pulse phase slip is caused by a
difference in phase velocity and group velocity inside the laser cavity. Coarse adjust-
ment of the carrier-envelope phase offset is realized by inserting a fused silica wedge
pair in the cavity. By moving one of the wedges in or out of the beam the amount
of dispersive material in the cavity is changed, leading to a relative change between
the phase and group velocity. Fine control and active stabilization of fceo is achieved
through control of the pump intensity, causing a change in the refractive index (and
therefore mostly the phase velocity) through the Kerr effect in the Ti:Sapphire crystal.
Experimentally, modulation of the pump intensity is achieved by inserting an AOM
(IntraAction Corp. AFM 804A1) in the pump beam. By adjusting the RF-power in
the AOM the pump intensity can be adjusted with sufficient range and accuracy. The
error signal for the feedback loop is generated by comparing the measured fceo to the
10 MHz output of the atomic cesium clock. In addition, the fceo frequency is also
measured with a frequency counter (Agilent 53131A) that is connected to the mea-
surement control computer. During the experiment the fceo is monitored and stored
to ensure that it is properly stabilized.

Together the stability of the fceo and the frep define the linewidth of the indi-
vidual comb modes, although in practice the frep has the biggest contribution to
mode broadening through mechanical vibrations. The linewidth is an important pa-
rameter because it can be a limiting factor in the precision that can be achieved in
a Ramsey-comb measurement, by reducing the modulation depth (contrast) of the
Ramsey-fringes. To determine the linewidth of the frequency-comb a beat note was
generated with an ultra-stable laser (Menlo Systems ORS1500). The ultra-stable laser
operates at 1542.48 nm and has an initial specified linewidth of less than 1 Hz. This
laser is injected into a 10 m fiber and amplified with a commercial fiber amplifier (NKT
Photonics Koheras Boostik). Part of the amplified light is doubled to 771.24 nm, which
is within the spectral range of the frequency-comb, and injected into another piece of
5 m single mode fiber to reach the Ti:sapphire comb laser. A small part of the spectrum
around 771 nm is selected via a grating and injected into a fiber.

The light from the ultra stable laser, and the frequency comb are combined using
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Figure 3.4: Beat signal between the ultra-stable reference laser and the fre-
quency comb at 771.24 nm. The signal is fitted with a Gaussian leading to an
estimated linewidth of the frequency-comb modes of 165 kHz (FWHM) with

day-to-day variations of 75 kHz.

a fiber combiner, and is subsequently measured with a photo diode. The photo diode
signal contains the difference frequency between the ultra stable laser and the closest
frequency-comb mode. This beat signal is electronically filtered and amplified to
increase the signal-to-noise ratio. A result of measurement is shown in Fig. 3.4 and
from the fit we can determine a linewidth for the frequency-comb modes of 165 kHz
(FWHM). This could vary on a day-to-day basis with as much as 150 kHz. The fibers
and amplifier add noise, i.e. additional linewidth, to the original spectrum of the ultra
stable laser but this is still far less compared to linewidth of the frequency-comb.

The are a few points noteworthy concerning the linewidth of 165 kHz that is
reported here. First of all, the manner in which the linewidth influences a Ramsey-
comb measurement is through the contrast of the observed Ramsey fringes. In the time
domain picture: as the delay time between the pulses increases the relative variation
in timing of the second pulse with respect to the first one progressively leads to a
smaller contrast. Because the relative phase is determined by the time delay (and
fceo) this is proportional to the stability of the frep, i.e. the linewidth. Transitions
to an excited state exhibiting a longer lifetime, can be observed over longer time
delays. That means that the linewidth of the comb modes needs to be sufficiently
narrow to be able to observe Ramsey fringes. For the initial experiments that have
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been performed on krypton, as presented in Chapter 4, the linewidth of the laser was
much larger, roughly 1.5-2 MHz. However, because the lifetime of the excited state
was only 55 ns the influence of the linewidth of the comb was not yet so limiting.
But for the experiments on molecular hydrogen, as presented in Chapter 5 , where
the lifetime of the excited state is 200 ns, the influence of linewidth of the comb
modes could be observed. The 1.5-2 MHz linewidth was mainly caused by acoustic
and mechanical noise that was added to the cavity through the water cooling system
of the base plate of the frequency-comb cavity. By building an additional housing
with specific noise canceling foam around the laser cavity, and dampers in the cooling
system, the linewidth could be reduced to 165 kHz, see Fig. 3.4. In order to probe
transitions over even longer delay times, for example for He+ with a lifetime of 1.9 ms,
it is required to improve the linewidth even further. This would require the laser to
be locked directly to the ultra stable optical reference which should be possible in the
future with the newly developed high-current (5A peak) piezo-driver for sufficiently
fast feedback. Alternatively the recently acquired ultra-low noise frequency comb
(FC1500-250-ULN) from Menlo Systems could be used.

3.3 The pump laser system

The pump laser system that provides a high-intensity pulse pair to drive the NOPCPA
consists of three major parts; the oscillator, a bounce amplifier and a post amplifier.
From the initial pulse train a pulse pair is selected using acoustic and electro-optic
modulators before the first amplification stage in the bounce amplifier. In addition,
after the bounce amplifier Pockels cells are implemented to be able to adjust and
stabilize the intensity of the pulse pair going into the post amplifier. In this section a
detailed description of each part of the pump pulse system is given.

3.3.1 The pump laser oscillator

The oscillator that provides the necessary laser pulses is based on a Nd:YVO4 crystal
that is pumped by a diode producing 29 W of continuous light at 880 nm (Jenoptik,
JOLD-30-CPXF-1L) [103] which is delivered through a 400 µm core fiber. The light
from the fiber is imaged into the Nd:YVO4 crystal whose surfaces are anti-reflection
(AR) coated for 880 nm and wedged by 1.5◦ to avoid unwanted lasing effects. A
schematic overview of the cavity is shown in Fig. 3.5. One end mirror of the cavity
is formed by the exit surface of the Nd:YVO4 crystal, which has, in addition to the
880 nm AR coating, also a 90 % reflective coating for 1064 nm. The other end mirror
of the cavity is formed by a semiconducter saturable absorber mirror (BATOP GmbH)
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that has a modulation depth of 1.2 % and a relaxation time of 10 ps, providing the
passive mode locking mechanism. The repetition rate of the laser can be controlled
through one of the folding mirrors that is glued on a single-stack piezoelectric trans-
ducer (Physik Instruments GmbH), which in turn is glued onto a heavy counterweight
cone filled with lead [104]. The range of this feedback is limited on the order of a
few µm and therefore thermal drifts during the day can cause the piezo to reach its
limits. To prevent this from happening the base plate of the cavity is water cooled
and a feedback mechanism is installed to keep the piezo within its working range by
adjusting the temperature of the cavity base plate. The Nd:YVO4 laser provides an
output of 5 W at a repetition frequency of 126 MHz, with a spectral width of 0.25 nm
centered around 1064 nm. Because the gain material in the post amplifier is Nd:YAG,
which has a much smaller gain bandwidth and slightly shifted center, the spectral
width has to be decreased in order to efficiently amplify in the post amplifier. To meet
this requirement less than 0.05 nm bandwidth is selected using a 4f-grating based sys-
tem with an adjustable slit placed in the Fourier plane. As a result we obtain pulses
with a duration between 60 and 80 ps depending on the specific requirements of op-
erating the NOPCPA. Due to the spectral clipping and losses in the grating the total
efficiency is roughly a few percent, leading to a final pulse energy on the order of 1 nJ.
These pulses are coupled into a single mode fiber to decouple the optical alignment of
the oscillator from the subsequent amplification stages.

The selection of a pulse pair from the initial 126 MHz repetition rate (∼7.9 ns rep-
etition time) requires fast modulators. This is achieved with a fiber-coupled electro-
optic modulator (EOM) (AM 1060 KF, Jenoptik) which requires only ∼3 V and can
sustain high repetition rate switching. This is particularly convenient because it can
be controlled using commercial delay generators (Stanford Research Systems DG645),
providing an easy programmable control over the pulse selection. However, the ex-
tinction ratio of the EOM is on the order of 33 dB, which results in unwanted pulses
leaking through and depleting the gain in the amplifiers. To increase the extinction
ratio a fiber-coupled AOM (Gooch and Housego T-M150-0.4) is placed in series before
the EOM. The rise time of the AOM is much slower (30 ns) and can therefore not be
used to select single pulses, but the higher extinction ratio ensures a loss of more than
80 dB outside the gate of both pulse picking gates, see Fig 3.5.

3.3.2 The bounce amplifier

After the spectral selection and the losses introduced by coupling into the fiber, and
pulse selection by the AOM and EOM, two pulses with an energy of 30 pJ remain.
These pulses are amplified in a bounce amplifier system (see Fig 3.6) consisting of two
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Figure 3.5: A schematic overview of the pump-laser system. A Nd:YVO4
crystal is pumped by 29 W of 880 nm light from a fiber-coupled diode. One
end mirror of the cavity is formed by the end surface of the laser crystal which
has a partial anti-reflex coating for 1064 nm. The other end mirror is formed
by a SESAM, which provides the passive mode-locking mechanism. To better
match the wavelength and bandwidth to the gain wavelength of the subsequent
Nd:YAG amplifier, 0.05 nm bandwidth of the original 0.25 nm output bandwidth
is selected in a 4f-grating system. The output pulse train is coupled into a fiber
where an AOM and EOM in series select two pulses for the amplification process.

(FI) Faraday isolator, (TG) transmission grating

Nd:YVO4 crystals, wedged at a 5◦ degree angle [105, 106]. The crystals are pumped
from one side by 130 µs long pulses at 880 nm wavelength from a quasi-cw linear diode
array with a peak power of 170 W. The total internal reflection of the seed beam in-
side the Nd:YVO4 crystal ensures a good beam quality at the output of the amplifier,
despite the asymmetric pumping of the crystal [101, 105, 107]. A waveplate is used to
align the polarization of the pump light relative the c-axis of the Nd:YVO4 crystals
and a cylindrical lens is used to shape the pump light for homogeneous pumping across
the surface of the crystal. The first amplification stage is build up in a double-pass
configuration and the beam is subsequently increased in size for the second amplifi-
cation stage that is employed in a single pass configuration. In between each pass
an additional Faraday optical isolator (FI) is installed to suppress possible dangerous
back reflections and prevent backward seeding which could otherwise significantly re-
duce the available stored energy. Because we aim to amplify two pulses within the
same pump pulse cycle, the temporal gain shaping of the first and second pulse has
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be considered carefully. Because the first pulse takes out a significant amount of the
stored energy in the amplifier crystals, the second pulse is subject to a significantly
different gain medium. This would lead to a much stronger first pulse if the pulses
are injected into the bounce-amplifier with equal energy. However, it is important for
correct operation of the NOPCPA that the two pump pulses are as identical as possi-
ble [69]. To compensate for this gain depletion effect the two pulses are injected with
an unequal pulse energy into the bounce-amplifier such that the resulting amplified
pulses are exactly equal in energy. Experimentally this is achieved by adjusting the
gates of the EOM differently such that the pulse seeding energy has a ratio of ∼1:4
(see Fig 3.5). As a result the bounce amplifier delivers two pulses with an energy of
0.95 mJ and a Gaussian beam profile (M2 <1.2) with a FWHM of 1.5 mm [102, 105].

3.3.3 The post amplifier

To further amplify the pulses up to the required 20-30 mJ energy level a Nd:YAG
based diode pumped post amplifier is used, see Fig. 3.6 for a schematic overview. The
main component of the post-amplifier is an amplification module (Northrop Grumman
REA6308-3P200HT) which houses a Nd:YAG rod of 14.6 cm length and 6.4 mm
diameter, and is pumped by 120 quasi-cw diodes with a combined peak power of 24 kW.
The diodes are configured in a five-fold symmetry around the rod. When seeding the
amplifier module with a Gaussian beam this non-uniform pumping is mirrored in the
intensity profile at the outer rim of the beam, and in addition diffraction from the edges
of the amplifier aperture may be observed. These effects lead to high-intensity hotpots
which need to be avoided in order to stay below the damage threshold of (possibly
expensive) optical elements [69, 108]. Moreover, to be able to extract the maximum
amount of stored energy a uniform beam profile across the diameter of the rod is
desirable. To obtain a uniform intensity profile the seed beam is expanded to 6 mm
FWHM and the center part is selected using a 3.5 mm diameter pinhole. Propagation
of such a ”flat-top” intensity profile immediately leads to diffraction caused by the
hard edges of the pinhole. Therefore the beam needs to be relay-imaged throughout
the amplifier and NOPCPA to recover the flat intensity profile (and phase front) at
the essential optical elements. After the pinhole the beam is relay-imaged onto the
entrance surface of the amplifier module with a beam diameter of 4.9 mm to avoid
diffraction from the module aperture, and to ensure homogeneous amplification across
the beam. The amplifier is operated in a double pass configuration where a Faraday
rotator is placed between the two passes to rotate the polarization by a total of 90◦.
The rotator compensates for thermally induced depolarization effects and allows the
back reflected beam to be coupled out by a thin-film polarizer. The amplifier module
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Figure 3.6: Schematic overview of the bounce and post amplifier after the
Nd:YVO4 oscillator. The bounce amplifier consist of two Nd:YVO4 crystals
that are pumped from one side by a linear diode array (LDA). The light is
imaged on the crystal by cylindrical lenses and a waveplate is used to align
the polarization to the c-axis of the crystal. The first crystal is operated in a
double pass configuration and the second crystal in a single pass configuration,
leading to a pulse energy of nearly 1 mJ. After the bounce amplifier two Pockels
cells are used that filter out unwanted pre- and between- pulses, and are used
to adjust the relative intensity. The beam is then enlarged and the center is
selected using a pinhole to create a flat-top beam profile. The beam is then
relay-imaged through a diode pumped Nd:YAG crystal which is operated in a
double pass configuration. After the post amplification stage the pulses have
a energy of 25-30 mJ. FI = Faraday isolator, FR = Faraday rotator, TFP =

thin-film polarizer.
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is operated with currents between 80-85 A, leading to a final pulse energy of typically
27 mJ.

Similar to the bounce amplifier, seeding the post amplifier with two equal pulses
will result in a much more energetic first pulse and different temporal profiles. There-
fore the energy of the seed pulses is again adjusted to obtain two identical pulses
after the amplification process. This is achieved using two Pockels cells (Lasermetrics
5046ER-VC) in combination with an optical isolator. This configuration serves a dou-
ble purpose because the operating voltage of Pockels cell can be adjusted in an active
feedback loop to stabilize the output energy ratio of the two pulses. Moreover, the
Pockels cell provides another mechanism to suppress unwanted pulses that can take
out gain between the two amplified pulses.

For the experiments described in Chapter 4 only a single Pockels cell was inserted
between the two amplifiers. To control the relative pulse energy, the rising edge of
the optical gate of the Pockels-cell was adjusted leading to changes in the amount of
polarization change of the first pulse (see Fig. 3.7). In this case the feedback mechanism
was based on changing the relative timing of the Pockels cell gate with respect to the
first pulse. Even though this solution worked surprisingly well it did suffer from
excess amplitude noise of the first pulse due to timing jitter on the steep slope of
the rising edge. In addition, the pulses in between the two amplified pulses were not
suppressed, causing the gain to be depleted before amplification of the second pulse.
For experiments where a relatively short pulse delay is used this is not a significant
issue, however for experiments where longer delay times are required this plays an
increasingly important role (see Chapter 5). The updated configuration with two
Pockels cells is shown in part (b) of Fig. 3.7.

3.3.4 Repetition rate synchronization

In order to amplify the frequency-comb pulses in the NOPCPA the pulses from the
frequency-comb and pump laser have to coincide in the NOPCPA with picosecond
precision. To achieve this the repetition rates of both lasers have to be synchronized
and stabilized very accurately. The stabilization of the repetition rate of the frequency-
comb laser was already discussed in section 3.2, and the locking of the repetition rate
of the pump laser is nearly identical. The repetition rate is again measured using
a 10 GHz bandwidth fast photo-diode (Electro-Optics Technology EOT4000). The
76th harmonic of this signal is mixed with the same 9.7 GHz reference as was used
for the frequency comb with an offset of ∼28 MHz. This signal is then mixed with
the 28 MHz output of the DDS to provide the error signal for a PID feedback loop
controlling the cavity length with the piezo mounted mirror inside the cavity. Using
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Figure 3.7: Sketch of the mechanism to control the relative pulse intensity. In
(a) the ’old’ situation is shown where the intensity of the first pulse was adjusted
through adjustments of the timing of the rising edge of a Pockels gate before
seeding the post amplifier. In (b) the ’new’ situation is shown where each pulse
is selected by a Pockels cell and the intensity of the first pulse is adjusted by

adjusting the high-voltage of the Pockels cell.

the same reference for the frequency-comb and pump laser provides a synchronous lock
of the repetition rates (see Fig. 3.8 for a schematic overview of the electronic scheme).
However, there can still be a phase offset between the repetition rate of the pump
oscillator and frequency comb that is not reproducible each time the lasers are locked.
To ensure temporal overlap in the NOPCPA a phase shift mechanism for one of the
locking schemes is required which is technically difficult to achieve at the 9.7 GHz of the
lock. Instead, this is realized by installing a second ”slow” repetition rate lock only for
the frequency-comb laser. The repetition rate is also mixed directly at 126 MHz with
the doubled output from another frequency generator (Agilent 33250A). This device
provides a straightforward way to change the phase over 360◦ such that the temporal
overlap between the pump and frequency comb pulses in the NOPCPA can always be
obtained. Switching between the ”fast” and ”slow” repetition locks is realized through
a potentiometer that allows a gradual change between the two locks, see Fig. 3.8.
After switching from the ”slow” lock to the ”fast” lock the temporal overlap between
the pump- and frequency-comb pulses can be fine-tuned even further using a physical
delay line in the path of the frequency comb.
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Figure 3.8: Schematic overview of the repetition rate locking electronics of the
frequency-comb and the pump oscillator. The repetition rate of both cavities
is measured with a fast photo-diode (FPD). The 76th harmonic of this signal
is mixed with the signal from a 10 GHz generator offset by ∼28 MHz. This
signal is then mixed with the output from a direct digital frequency synthesizer
which is then used as the error signal for a PID feedback loop that controls the
cavity length through a piezo mounted mirror. To adjust the relative phase of
the repetition rate lock an additional ”slow” locking scheme is installed for the
frequency comb. Gradually switching between the two different locks is achieved

using potentiometer (PM). (LPF) Low pass filter, (BPF) band pass filter

3.4 The non-collinear optical parametric amplifier

The non-collinear optical parametric chirped pulse amplifier (NOPCPA) consists of
three amplification passes in two BBO crystals, where the first crystal is operated
in a double pass configuration, see Fig. 3.9. The seed pulses are provided by the
frequency-comb laser pulses that are first stretched by 2nd-order dispersion in a 4f-
grating based stretcher. In addition, a movable slit in the Fourier plane of the stretcher
selects a (small) part of the original frequency comb spectrum. The spectral clipping
and stretching lengthens the frequency-comb pulses to ∼10-20 ps depending on the
exact configuration and requirement for the experiment. This is necessary to obtain
sufficient temporal overlap with the pump pulses (that have a duration of 75 ps) and
achieve efficient amplification. The comb pulses are amplified by the first BBO crystal
(5 mm length) and double passed by back reflecting the seed and pump beam. The
back reflected beams are displaced vertically in order to extract the beam for the next
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stage. The comb beam is then expanded and overlapped with the pump beam in a
second BBO crystal of the same length (see Fig. 3.9). Here the pulses are amplified to
an energy of 2-3 mJ where the second and third amplification passes are operated in
the saturated regime. The flat-top intensity profile of the pump beam is reproduced in
the amplified frequency-comb beam, leading to diffraction patterns after propagation.
In order to create a collimated beam with a Gaussian intensity profile a 2f-lens system
is built up with an additional spatial filter in the Fourier plane that filters out the
higher-order spatial modes (see Fig. 3.9).

As a result, the laser system presented in this Chapter produces two near infrared
frequency-comb pulses with an energy upto 3 mJ (see also [66, 69, 97, 108] for earlier
versions of the system). The delay between the pulses can be adjusted on a very short
time scale (attoseconds) by small adjustments of the repetition rate and on a much
longer time scale (nanoseconds) by selecting a different pump pulse pair. The next
section discusses in detail the influence that the pump pulses exert on the phase of the
frequency-comb pulses.

3.5 The phase measurement setup

During the parametric amplification process the pump pulses influence the phase of
the amplified frequency-comb pulses [69, 109]. This is a potential source of a sys-
tematic error in the frequency determination from a Ramsey-comb measurement, but
only if this phase distortion is not constant as function of time delay. The pump
laser system was specifically designed to avoid such spurious phase shifts by keeping
the characteristics of the pump pulse pair as constant as possible as function of the
delay time [69, 102, 105]. To ensure that these amplification-induced phase shifts do
not influence the measurements, an additional phase measurement is performed to
accurately determine the relative phase difference between the excitation pulses.

The phase difference of the amplified frequency-comb pulses is measured based on
linear spectral interferometry in a Mach-Zehnder type interferometer, see Fig. 3.10
for a schematic overview (see also Ref. [108, 109]). It has the advantage that pulse
intensity fluctuations do not influence the measurement much. In addition, this setup
has the benefit that the wavelength dependence can also be measured. The reference
to compare the amplified pulses with is formed by the original frequency-comb pulses,
which are split off before the NOPCPA by a half-wave plate and polarizing beamsplitter
cube. Before combining the reference pulses with the amplified pulses the path length
of the reference pulses is matched to the path length of the NOPCPA to ensure inter-
ference with its original counterpart. This procedure eliminates the influence ∆φceo
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Figure 3.9: Overview op the non-collinear optical parametric amplifier
(NOPCPA) which consists of three amplification stages in two BBO crystals
(OPA1 and OPA2). Each crystal is pumped with the frequency-doubled pulses
(532 nm) from the pump laser system. The seed pulses are first lengthened in
time in 4f-grating based stretcher and then overlapped with the pump pulses in
the NOPCPA-crystals. To fine tune the timing between the seed and pump pulses
a manual translation stage (TS) is implemented. The amplified frequency-comb
pulses are focused in a vacuum tube with a spatial filter to obtain a collimated

beam with a Gaussian intensity profile. (SHG) second harmonic generation

of the original frequency comb pulses from the measurement. In addition, a second
stretcher that is identical to the stretcher before the NOPCPA is installed to match
the chirp of the reference to that in the amplified pulses. After the recombination both
the reference and amplified pulses are coupled into a large mode area fiber 1 to ensure
perfect mode overlap. To avoid unwanted background signal from the non-amplified
frequency-comb pulses, two Pockels cells (Lasermetrics 5046E) are used in series. The
timing and duration of each Pockels cell gate is set such that it rotates either the first
or second pair of reference and amplified pulses. The non-amplified frequency-comb
pulses are coupled out using polarizing beamsplitter cubes (PBS) with a total contrast

1This type of fiber is chosen to suppress non linear effects that can occur due to the pulse peak
power. Because the pulses are lengthened in time these non linear effects are already strongly sup-
pressed.
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Figure 3.10: Overview of the phase-measurement setup. Pulses are split off
the frequency comb before the NOPCPA and recombined with the amplified
counterpart and coupled into a fiber. To select the amplified pulses and avoid
background from the non-amplified comb pulses two Pockels cells are used in
double pass configuration. Then a third Pockels cell is used to be able to project
each pulse separately on a ccd-camera in a grating based spectrometer. Based on
the spectral interference between the reference and amplified pulse the relative

phase can be determined.

of better than 1000:1. In order to observe the phase from each pulse separately, an
additional Pockels cell is then used to rotate the polarization of only one of the pulse
pairs, which is again coupled out by polarizing beamsplitter cubes. The two paths are
brought back together but with a slight vertical offset in order to project each pulse
pair (original and amplified pulse) separately onto a camera. To observe the spectral
interference a grating based spectrometer is used consisting of a 1200 lines/mm grating
in combination with a high-sensitivity infrared ccd camera (IMI-TECH IMB-716-G),
see Fig. 3.10. To increase the resolution the beam is enlarged to a FWHM of 2.5 cm,
limited by the effective size of the grating. The frequency of the observed interference
fringes can be adjusted by a manual delay stage situated in the arm of the reference
pulses.

An example of an interferogram recording of a single pulse combination (e.g. first
pulse with its reference) shown in Fig. 3.11 where in the top figure part of the ccd
image is shown and in the bottom figure the integrated intensity. From each interfer-
ogram (belonging to the first and second excitation pulse) a phase can be extracted
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Figure 3.11: Example of a ccd camera image for the phase measurement. The
first and second exciation pulse are projected separately in the vertical direction.
Such a single frame is based on the interference of a single amplified pulse with its
original frequency-comb counter part. The full width of the camera corresponds

to a bandwidth of 4 nm

using a Fourier-transform based method and subsequently a phase difference can be
determined [109, 110]. The optical path difference introduced in order to project each
pulse separately onto the ccd camera, causes an additional phase shift between the
projections. This phase shift can be calibrated out by interchanging the interference
patterns by reversing the operation of the last (third) Pockels cell. With this technique
the absolute phase difference between the two excitation pulses can be measured. Al-
though we are primarily interested in the phase stability as function of time, and not
so much the value of the absolute phase shift, it does provide a nice method to check
that the NOPCPA is operated in the right regime.

An example of a phase measurement result conducted with this setup is shown in
the upper part of Fig. 3.12. The measured phase difference is plotted as function of
the delay time between the pulses where each delay is indicated by vertical bars. At
each delay time the phase is measured for 750 laser shots and the projections of the
first and second pulse are swapped every 50 laser shots. The result of the alternate
switching of the interference patters is clearly visible in the zoom-in of the bottom
part of Fig. 3.12. The zoom-in shows the measured phase at a delay time of 79 ns,
corresponding to a pulse separation of ∆N = 10 in terms of the repetition rate of the
laser. The real phase difference between the pulses is equal to half the phase difference
between the difference projection states.

In Fig. 3.13 the averaged results of the true phase difference is plotted, and in
this example the phase difference fluctuates around -168 mrad and the uncertainty
of the measurement points is based on the variation within the data acquired for the
data in Fig. 3.12. This measurement was taken for a center wavelength of 800 nm
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Figure 3.12: Results of a differential phase measurement at 800 nm wavelength
and 2 nm bandwidth. The phase is measured as function of the time delay
between the excitation pulses which is varied between 16 and 300 ns. Every
50 laser shots the interferograms are interchanged in order to calibrate the addi-
tional phase shift caused by the different optical paths of the projections on the
ccd camera. In the bottom figure a zoom of the measured phase at ∆N = 10
shows in more detail the swapping between the ”up” and ”down” projections.

Based on this data the true phase difference can be determined.

and a bandwidth of 2 nm, and showed no significant dependence on delay within the
uncertainty of 6 mrad. There are several sources that can potentially influence the
relative phase between the excitation pulses and they have to be treated carefully in
order to keep the phase difference constant as function of time delay. In the next
sections these potential sources of phase distortion are calibrated which is important
for the results presented in Chapter 4 and Chapter 5.

3.5.1 Self reference calibration

The goal for the Ramsey-comb setup is to be able to increase the time delay between
the excitation pulses as much as possible while keeping the relative phase difference as
constant as possible. If the phase is not constant but, for example, the phase increases
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Figure 3.13: Example of a phase measurement result with a pulse delay upto
300 ns which. The absolute phase difference fluctuates around -168 mrad. Re-
peating such measurement shows that fluctuations are statistical and not sys-

tematic over the depicted time delay.

linearly with the delay time then this would lead to a frequency shift according to

∆f = ∆φ
2π ·∆N · Trep

(3.1)

where ∆φ is the phase difference between the two excitation pulse pairs and ∆N is the
delay time difference expressed in numbers of Trep. If the transition that is investigated
is at a harmonic of the fundamental laser light, or if a two-photon transition is probed,
then also this has to be accounted for by multiplication with the effective harmonic.
For example, if we probe a two-photon transition at 210 nm (the fourth harmonic of
the fundamental) with a maximum delay time difference of 5 × Trep = 40 ns, then
a differential phase shift of just 5 mrad over this delay difference would lead to a
frequency shift of 159 kHz. This simple calculation shows that we have to be careful
when we take into account the influence of the optical phase shift.

Creating an amplified pulse pair with a time delay of a few microseconds (or even
longer) is relatively straightforward. However, when the relative phase difference is
measured some erratic behavior is observed, with phase differences on the order of
30 mrad after a time delay of approximately 400 nanoseconds, see Fig. 3.14. This was
an unexpected result because there are no effects (to our knowledge) that should occur
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Figure 3.14: In blue the measured phase difference between the amplified ex-
citation pulses as function of delay time. The phase is stable up to 450 ns delay
time and then exhibits erratic fluctuations on the order of 30 mrad. In red the
measured phase from the self-reference measurement. This measurement shows
the same pattern indicating that the measured phase fluctuations are caused by

the phase measurement setup itself.

at that specific delay time. In order to determine the cause of these phase variations
much effort was put into identifying any correlation with experimental parameters such
as ringing effects in the pulse picking sequence and the parameters of the Pockels cells
used in the phase measurement setup. Because we were unable to determine any such
correlation an additional setup was build to be able to perform a self-reference test
to determine the influence of the phase measurement setup itself. This was achieved
by building an additional Mach-Zehnder type interferometer in the reference arm us-
ing waveplates and polarizing beamsplitter cubes. This provides identical frequency
comb pulse pairs for the phase measurement setup and should therefore produce a per-
fectly constant differential phase as function of time delay 2. However, the measured
phase difference again showed a similar erratic behavior as function of time delay, see
Fig. 3.14. This result demonstrates that the measured phase differences after 400 ns
delay time are actually produced in the phase measurement setup itself, and are not

2In this case all pulses are equal and the time delay no longer has any meaning. It is adjustment
of the temporal gates of the Pockels cells in the phase measurement setup that now defines the time
delay by picking pulse pairs.
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Figure 3.15: The measured phase difference as function of pulse delay from the
self-reference measurement setup. The different colors are measurements for in-
creasing fringe period (blue, green and purple) expressed in number of fringes per
pixel on the camera. This graph illustrates that the time delay between the two
interfering pulses leads to an additional absolute phase shift in the measurement,

but importantly, does not influence the relative phase.

a result of the amplification process. The most likely cause for this effect is an addi-
tional phase shift that is introduced by the ringing of the high-voltage switching in the
Pockels cells. In order to probe the phase over longer time delays this effects needs to
be calibrated or removed from the measurement, but for the measurements presented
in this thesis the time delay was not increased beyond 350 ns.

As it turned out there is another effect that influences the absolute phase difference,
which is the time delay between the reference pulse and the amplified pulse, related
to the observed period of the interference. Increasing the time delay between the
two interfering pulses decreases the fringe period on the camera, leading to a higher
potential resolution and a better statistical uncertainty. However, in the Fourier-
analysis of the signal (to obtain the phase), the spectral fringe signal can be modified
by spurious frequency components (e.g. due to additional pulses from beam splitters
in the setup), leading to phase shifts. This we try to avoid by selecting the right
interference period. Still, Fig 3.15 shows a dependence of the measured self-reference
phase for increasing fringe period (expressed in fringes/pixel) indicated by the blue,
green and purple data points. It is clear that the absolute measured phase increases
for a longer time delay between the reference and amplified pulse. Also this effect
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Figure 3.16: Self-reference phase measurement that demonstrates that the re-
sults of the phase measurement are not influenced by the setup itself up to a

pulse delay time of 300 ns.

is most likely related to the operation of the Pockels cells. Because we select single
pulses from the pulse train the temporal gate of the Pockels cell is as short as can be
generated by the drivers. By increasing the time delay between the laser pulses they
will probe a different part of the temporal evolution of the Pockels gate, leading to a
small but significant phase shift.

Although there can be an additional phase shift as function of the time delay be-
tween the reference and investigated pulse, this phase shift is constant as function of
time delay, see Fig. 3.16. We therefore conclude that up to pulse delays of 400 ns the
phase measurement setup itself has no influence on the differential phase as function
of time delay. Phase measurement beyond this time delay will require more careful
evaluation to disentangle the influence of the amplification process and phase measure-
ment setup. It is expected, however, that there is no real significant phase distortion
after 400 ns but based on the available data it cannot be excluded.

3.5.2 Influence of the pump pulse intensity on the phase in the
NOPCPA

Analytic solutions to the coupled wave equations describing parametric amplification
(Eqs. 2.18) can be obtained in certain limiting cases [111–113]. One can find solutions
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Figure 3.17: In the upper graph the combined energy the amplified frequency-
comb pulses is plotted (relative to the first data point) as function of delay time,
and the bottom graph shows the corresponding relative phase shift. For the
triangular (green) data points no feedback was applied to stabilize the NOPCPA
output and therefore the pulse energy changes as function of delay time. As a
result the measured phase shift as function of delay time varies by more than
20 mrad. By applying active feedback through the pump pulses of the NOPCPA
this effect can be controlled to the level of 5 mrad indicated by the round (blue)
data points. These measurements were performed by operating the NOPCPA

with a bandwidth of 2 nm.

for the evolution of the phase of the interacting beams during the amplification pro-
cess. As it turns out the phase of the signal beam is independent of the phase of the
pump beam. However, while the phase of the pump hardly contributes, the intensity
of the pump pulses can influence the phase of the signal beam [111, 114]. Fortunately,
the frequency extracted from a Ramsey-comb measurement is not influenced by an
absolute phase offset. This means that the relative phase ”only” needs to stay con-
stant as function of the delay time. Nonetheless, these phase shifts can potentially
influence the measurements as is illustrated in Fig. 3.17. In this figure the top graph
shows the relative amplified frequency-comb pulse intensity and the bottom figure
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the measured relative phase difference, both as function of time delay. The measure-
ment was repeated for two different situations. The first, indicated by the green data
points, is a measurement where the system is ”free running”, i.e. there is no active
stabilization on the pulse energy of any kind. The second situation, indicated by the
blue data points, is a measurement where the pulse energy is actively stabilized both
relative to each other as well as the total energy of the pulses combined. These graphs
clearly demonstrate that there is a correlation between the pulse energy and the mea-
sured phase that can lead to significant systematic frequency shift in a Ramsey-comb
measurement.

To further investigate the correlation between the phase and the intensity of the
pump pulses, measurements were taken at a fixed delay time while the relative intensity
or total intensity of the pump pulses was varied. The results of these measurements
are shown in Fig. 3.18. In this figure the left plot shows the measured phase difference
as function of the relative pulse energy of the excitation pulses. Varying this relative
intensity is achieved by changing the intensity of first pump pulse of the NOPCPA
(see Section 3.3.3). There is a clear correlation between the relative phase and the
change of the pulse ratio. Here we observe 2 mrad phase shift per 1% energy difference,
assuming a linear relation. Similarly, the total intensity of the NOPCPA output can
be modulated by adjusting both pump pulses at the same time, which can be achieved
by adjusting the total gain of the post amplifier. The phase shift as function of the
relative total intensity is plotted in the right graph of Fig. 3.18. The blue line is a
linear fit to the data and indicates a -24 mrad phase shift per 1% change in total energy
and we therefore have to carefully stabilize our pulse energy to avoid such phase shifts
in the experiment. The magnitude of these phase shifts can vary from day to day
because it depends on the exact alignment (inducing phase mismatch effects, as well
as cross-phase modulation variations) of the NOPCPA. These measurement indicate
that it is crucial to maintain a stable pulse energy in order to avoid phase shifts that
can influence the frequency determination. Based on these measurements, data points
for which the total pulse intensity deviated more than 0.25% compared to the average
were discarded from the analysis.

3.5.3 Spectral dependence of the phase

Another aspect, particularly important for the measurements presented in Chapter 4,
is the spectral dependence of the relative phase difference. Because of the dynamics
and saturation effects in the NOPCPA the spectrum of the amplified frequency-comb
pulses is not Gaussian or square but instead has a ’cathedral’ shape (two peaks at the
end, and a plateau in the middle). As a result the interferograms that are captured
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Figure 3.18: In the left graph the phase difference between the excitation pulses
is plotted as function of relative intensity of the amplified frequency-comb pulses
at a fixed time delay. There is a clear correlation between the pulse ratio and
the measured phase shift and fitting the data with a straight line indicates a
phase change of 2 mrad/1% energy difference. This magnitude of this slope
may vary depending on the alignment of the NOPCPA, in part due to residual
phase mismatch and due to cross phase modulation from the pump beam. In
the right graph also the phase difference at a fixed time delay is plotted, only
here as function of the total output of the NOPCPA. Again a clear correlation is
observed, and from this measurement phase change of -24 mrad per 1% change
in output energy is measured. The data of the right plot was acquired as a quick
check of the effect; as a result the conditions where less well controlled and the

error bars as shown are most likely underestimated.

in the phase measurement also poses this additional modulation, see the top part
of Fig. 3.19. In fact, the higher intensity edges of the spectrum are used for the
experiments in krypton (see Chapter 4), and it is therefore important to establish that
the phase is constant in these extreme circumstances. To increase the signal-to-noise
ratio, the intensity of the amplified pulses is measured separately before each phase
measurement and subtracted as background signal to obtain a more flat interferogram,
see bottom part of Fig. 3.19. The interferogram presented in this figure is for ∼3.5 nm
wide bandwidth, centered around 852 nm 3.

To determine the phase stability for each part of the spectrum, the left, center and
right part are analyzed separately. The different parts of the spectrum are indicated by
the solid background color in Fig. 3.19, red, green and blue, respectively. In Fig. 3.20
the obtained phase difference as function of pulse delay is plotted for each part of the
spectrum and in addition for the complete spectrum in grey. Within the statistical
uncertainty there is no difference in the behavior of the phase for different parts of the

3Based on separate measurements with an Ando optical spectrum analyzer.
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Figure 3.19: Top figure: Interferogram as recorded by the camera in the phase
measurement setup. The double peak structure of the spectrum from the ampli-
fied pulses is clearly visible. The interference with its non-amplified counter part
is superimposed on top of the double peak structure. Bottom figure: To obtain a
cleaner signal the intensity from the amplified pulses is recorded separately and
subtracted from the measured interferogram, which is depicted in the bottom fig-
ure. There is still a slight modulation visible because the intensity at the edges
of the spectrum is less stable than in the center and therefore the background
from the amplified pulses is not always perfectly canceled. To determine if the
phase behaves different at the edges than in the center the analysis was done on
separate regions indicated by the red, green and blue shaded areas, see Fig. 3.20.

spectrum. The uncertainty for the separate parts of the spectrum is slightly larger due
to the fact that less fringes contribute to the signal, which decreases the signal-to-noise
ratio. This result shows that despite the strong saturation effects leading to significant
different behavior across the spectrum, the relative phase remains constant across the
spectrum of the amplified pulses as function of time delay.

3.6 Conclusion

To conclude, in this chapter a detailed overview of the Ramsey-comb laser system is
presented. The laser system provides an amplified frequency-comb pulse pair upto a
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Figure 3.20: Phase measurement results for different parts of the spectrum for
the same data set. The part of the spectrum is indicated by the different colors
(see Fig. 3.19). This measurement shows that there is no significant difference
in the behavior of the relative phase difference across the spectrum despite the

different influence of the NOPCPA on the different parts of the spectrum.

pulse energy of 2 mJ with an adjustable time delay. The time delay can be adjusted
on two time scales; in incremental steps at the repetition time (7.9 ns) by selecting
different pulse pairs, and on a much shorter timescale (∼100 attoseconds) by small
adjustments of the repetition time of the frequency-comb and pump laser. In addition,
the pulses are produced in such a way that the relative phase remains stable as function
of the time delay, a crucial property for Ramsey-comb spectroscopy. We have presented
details of the phase measurement setup and shown that for delay-times below 400 ns
the phase-measurement itself has no influence on the results. For longer delay times the
electronic switching of the Pockels cells in the setup influences the results and therefore
requires more careful analysis and further investigation to extend beyond this value.
Also the influence of the pump pulse energy on the phase of the amplified frequency
comb pulses is calibrated. These properties are carefully monitored in order to obtain
a stable phase during the Ramsey-comb measurements presented in this thesis. In
addition, the wavelength dependence of the phase in the parametric amplification
process is considered. Despite strong differences in behavior across the spectrum the
phase remains stable as function of the pulse delay time.





4

4High-precision Ramsey-comb
spectroscopy on the
two-photon
4p6 → 4p55p[1/2]0 transition in
krypton at 212.55 nm

4.1 Abstract

High-precision spectroscopy in systems such as molecular hydrogen and helium ions is
very interesting in view of tests of Quantum Electrodynamics (QED) and the Proton
Size puzzle. However, the required deep-ultraviolet and shorter wavelengths pose
serious experimental challenges. Here we show Ramsey-comb spectroscopy in the
deep ultraviolet for the first time, thereby demonstrating its enabling capabilities for
precision spectroscopy at short wavelengths. We excite 84Kr in an atomic beam on the
two-photon 4p6 → 4p55p[1/2]0 transition at 212.55 nm. It is shown that the AC-Stark
shift is effectively eliminated, and combined with a counter-propagating excitation
geometry to suppress Doppler effects, a transition frequency of 2,820,833,101,679(103)
kHz is found. The uncertainty of our measurement is 34 times smaller than the best
previous measurement, and only limited by the 27 ns lifetime of the excited state.

4.2 Introduction

Quantum Electrodynamics (QED) theory is a cornerstone of the Standard Model and
one of the best tested fundamental theories in physics. Its predictions have been
verified with extreme precision, e.g. by measuring the fine structure constant α de-
rived from measurements of the electron g-factor [16, 27], interferometric recoil experi-
ments [115, 116], and bound-state QED tests based on precision spectroscopy in atoms,
molecules and highly-charged ions (see e.g. [21, 100, 117–121]). In fact, QED-theory
for atomic hydrogen has now become so accurate and the spectroscopic experiments
so precise (made possible by the advent of the frequency-comb laser), that the limit-
ing factor in the comparison between theory and experiment is the uncertainty in the
proton-charge radius (rp), and the Rydberg constant (R∞). In pursuit of testing QED

65
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ever better, substantial efforts have been made to extract the fundamental quantities rp
and R∞ from the spectroscopy of atomic hydrogen. However, when the CREMA col-
laboration determined the proton charge radius from spectroscopy in muonic hydrogen
(consisting of a proton and a muon), it lead to a considerable (5σ to 7σ) mismatch with
the value extracted from normal (electronic) hydrogen [28, 29, 122]. This discrepancy
between experiment and theory is now commonly known as the proton-charge radius
puzzle and is enforced by recent results on muonic deuterium that reveal that also
the deuteron radius is significantly smaller (7.5 σ) than the radius based on electronic
deuterium spectroscopy [36].

One approach to solve this puzzle is based on measuring more transition frequen-
cies in muonic and electronic hydrogen. In particular more measurements in elec-
tronic hydrogen are helpful to obtain an improved value for the Rydberg constant
(see e.g. [117, 118, 123]), to disentangle the influence of this constant and the finite
proton size effect. Also spectroscopy of muonic helium ions is pursued [122] to test
the finite size effect of a different nucleus. In view of these efforts two more systems
are particularly interesting: 1S-2S spectroscopy in electronic helium ions [46, 122],
and spectroscopy of molecular hydrogen [51, 124]. Molecular hydrogen has also been
used recently for searches of physics beyond the Standard Model, such as possible
fifth forces [125]. In both systems the challenge is the short wavelengths required for
electronic excitation from the ground state: deep-UV for H2, and extreme-UV (XUV)
for He+, where no narrow-band laser sources or frequency combs are available.

To overcome this challenge, nonlinear optics with frequency-comb lasers is pursued
to directly excite transitions with an upconverted comb laser [62, 100]. The typical
pulse energy of a few nJ of most comb lasers is not sufficient for that. One approach
to increase the energy is based on full-repetition rate amplifiers and enhancement
resonators to reach the required µJ-level pulse energy for intra-cavity high-harmonic
generation (HHG) [60–62]. Alternatively, one can amplify only two pulses from a fre-
quency comb laser for HHG [100]. This can lead to more efficient wavelength conver-
sion and to higher two-photon transition probabilities. If then pulse pairs at multiple
delays can be selected, precision spectroscopy via the Ramsey-comb method becomes
possible [67] with orders of magnitude higher pulse energy (mJ/pulse in the IR and
tens of µJ/pulse in the UV) than achievable with full repetition rate based methods.
Previously we demonstrated these properties for near-infrared two-photon transitions
of rubidium in a gas cell, showing that even with only two pulses, the accuracy and
resolution of frequency combs can be recovered [67, 68].

In this chapter we demonstrate that Ramsey-comb spectroscopy can be extended to
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much shorter wavelengths in the deep-UV for the first time. This is illustrated by a 34-
times improved frequency measurement in an atomic beam on the 4p6 → 4p55p[1/2]0
two-photon transition in 84Kr at λc ≈ 212.55 nm.

4.3 Ramsey-comb method

Ramsey-comb spectroscopy is based on a series of measurements using only two phase-
coherent pulses from a frequency-comb laser. Frequency comb lasers are ideally suited
for this purpose as they produce an infinite train of pulses with a well defined repetition
time (Trep) and phase relation (∆φceo) between subsequent pulses. In the following
description we assume excitation of a two-level atom with a transition frequency ftr.
Excitation with two selected comb laser pulses resembles Ramsey’s method of sepa-
rated oscillatory fields, which is the basis of most atomic clocks in the radio-frequency
and optical domain [65, 126]. Each excitation pulse induces a superposition of the
ground and excited state. Quantum interference between the two excitation contribu-
tions then leads to an excited state population (ρ22) which depends on the exact time
delay (∆t) and optical phase shift (∆φ, including ∆φceo) between the two excitation
pulses:

ρ22(∆t) ∼ cos(2πftr∆t+ ∆φ) (4.1)

By probing the excited state population as a function of ∆t, traditional Ramsey-fringes
are observed from which the transition frequency can be determined. One issue with
Ramsey spectroscopy is a possible spurious phase shift in the excitation pulses that is
not accounted for [63, 100]. With frequency comb lasers this issue can now be solved
in an elegant way if pulse pairs are selected at different multiples of the repetition
time of the frequency-comb laser. One can then record signals at a series of delays
equal to

∆t = ∆N · Trep + δt (4.2)

where ∆N is an integer. To record a Ramsey signal at each ∆N , the repetition time
of the laser is scanned by a small amount δt. Combined with the larger time steps by
changing ∆N this results in a series of recordings that together forms the ”Ramsey-
comb” signal [67]. The advantage of comparing signals from multiple pulse pairs is that
any constant phase shift as function of ∆N can be identified as a common influence.
Therefore it can be eliminated from the transition frequency determination even if the
absolute value is unknown, which greatly enhances the accuracy. If the pulse energy is
kept constant as a function of ∆N , the AC-Stark shift from the excitation pulses also
manifests itself as a constant phase shift of the Ramsey signals, which can therefore be
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eliminated as well. Moreover, similar to traditional Ramsey spectroscopy, the accuracy
of Ramsey-comb spectroscopy becomes better for longer time delays.

4.4 Experimental setup

Experimentally, we create high-intensity pulse pairs by parametric amplification of
pulses from a Kerr-lens mode-locked Ti:sapphire frequency-comb laser (see Fig. 4.1).
The repetition frequency (frep=126 MHz) and carrier-envelope offset frequency (fceo =
∆φceofrep/2π) of the comb laser are both referenced to a cesium atomic clock for
absolute frequency and time calibration.

In a stretcher the pulses from the comb laser are spectrally clipped to 3 nm around
850.2 nm and chirped by 1.2 · 106 fs2 of 2nd order dispersion to produce 12 ps pulses.
These pulses seed a noncollinear optical parametric chirped-pulse amplifier (NOPCPA)
where selectively two frequency-comb pulses are amplified up to 1.7 mJ. The two 75 ps
pump pulses at 532 nm wavelength for the NOPCPA are produced with a separate,
synchronized laser system (see [69, 105]).

The sharp spectral clipping of the seeding beam results in a sinc-like pulse in the
time domain. The wings of the sinc are strongly amplified in the NOPCPA operating
in a saturated regime, and because we use chirped pulses, the amplification in the
wings of the pulses corresponds to an enhanced amplification of the ”red” front edge
and the ”blue” trailing edge of the pulse. This results in a spectrum with two peaks
at the edges of the spectrum as shown in Fig. 4.2. It also leads to a separation in
time of the two spectral regions and increases the total amplified pulse duration to
approximately 20 ps.

Deep-ultraviolet generation

The amplified frequency-comb pulses are frequency upconverted using three β-barium-
borate (BBO) crystals, producing up to 45 µJ/pulse at 212.55 nm. The resulting
deep-UV beam is split in equal parts by a metallic beamsplitter. This enables to
excite the two-photon transition in a counter-propagating laser beam configuration
so that the first-order Doppler shift is reduced. The collision point of the excitation
pulses is overlapped with an atomic beam based on a pulsed supersonic expansion of
krypton atoms. The direction and divergence of the atomic beam is determined by a
skimmer, 4-5 cm from the nozzle with a circular opening 0.5 mm, and a subsequent
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Figure 4.2: Spectrum of the selected FC spectrum before amplification (in
black dashed line) and after amplification (solid blue line) in the NOPCPA. The
oscillations in the amplified spectrum are an artifact, caused by mode beating in

the fiber that was used to record the spectrum

slit of 3 mm width 1. After the excitation pulses, an ionization pulse at 532 nm is
applied which only ionizes krypton atoms that are in the excited state. The resulting
ions are extracted with a pulsed electric field to enable field-free excitation. A time-of-
flight drift tube is then used in combination with a channel-electron multiplier (CEM)
to separate and detect the different isotopes with a mass resolution of m/∆m = 212
(FWHM), see Fig. 4.3. Each isotope is measured individually with a Boxcar integrator
(Stanford Research), and the whole experiment is repeated at a rate of 28.2 Hz.

Excitation geometry

With two counter-propagating ultrafast laser pulses, the two-photon transition can still
be excited from just one side, leading to calibration errors and reduced signal contrast.
This signal can be suppressed by strongly chirped pulses [127, 128], or more effectively
by circularly polarized light, or a combination of both [67]. However, purely circularly

1In retrospect this atomic beam geometry is not ideal. Because the nozzle relatively close to the
skimmer the clogging effect will cause the skimmer to act as a secondary source leading to a decreased
density. A better geometry (implemented in future experiments) is to use a larger skimmer (±2 mm)
at a much larger distance (±20 cm)
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Figure 4.3: Typical Time-of-Flight detection of the isotopes of krypton. The
relative signal depends on the state of the phase of their respective Ramsey
oscillation. We have choosen a time-of-flight snapshot which pattern is a close
representation of their natural abundance. The large signal of the most abundant
isotope 84Kr strongly affects the operation of the detector, and therefore the
signal of isotopes arriving later. This effect can also be seen as a shift of the

detector signal baseline after 84Kr.

polarized light is difficult to achieve for deep-UV ultrafast laser pulses. Therefore we
use an alternative approach with linear polarized light pulses that are split in two parts,
a ”red” and a ”blue” part relative to the transition frequency [128]. Combined with
chirp in the pulses, their time evolution is also split in a ”red” and ”blue” part. With
this temporal and spectral shape the transition can only be excited when the ”red”
and ”blue” parts of the pulses overlap from opposite sides, thereby fully suppressing
excitation by a single side.

Experimentally this is realized by nonlinear upconversion of the chirped funda-
mental pulses in three consecutive nonlinear crystals (see Fig. 4.1). In the first BBO
crystal (1.0 mm thick) the full bandwidth of the fundamental pulse is frequency dou-
bled to ∼425 nm. The second doubling stage, to the deep-UV, is split up over two
separate crystals. The thickness of these crystals (0.5 mm) is chosen such that the
phase-matching condition is limited to a narrow spectral range (<0.5 nm). Each crys-
tal is only phase matched at one edge of the spectrum so that a double-peak structure
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Figure 4.4: Measurement of the krypton ion signal as function of the position
of the collision point. The collision point of the deep ultraviolet pulses is moved
by adjusting a translation stage in one of the arms of the counter propagating
beams. Because of the large chirp on the pulses and the frequency upconversion
geometry we are able to observe two separate collisions points. This is an effective
way to eliminate single side background signal without additional optics in the

ultraviolet.

is created in the deep-UV with zero intensity at the two-photon resonance. Because
of the large chirp introduced by the stretching, the temporal shape of the laser pulses
will have a similar double-peak structure with the ”blue” edge of the spectrum trailing
the ”red” edge (see in Fig. 4.1). The spatial separation of the two colors (∼6.5 mm,
equivalent to 21 ps) is larger than the width of the atomic beam (∼3 mm), so we are
able to observe the two collision points separately (where ”blue” meets ”red” and vice
versa). This is illustrated in Fig. 4.4 where the ion signal is plotted for as function
of the position of the collision point. The position of the collision point is changed
by moving a translation stage that is mounted in one of the arms after the beam-
splitter. We clearly see the two separate appearances of the split ultraviolet pulses,
demonstrating the efficiency in removing the background signal using the split pulse
technique.
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4.5 Ramsey signals at 212 nm

Using this setup Ramsey-comb signals for the 84Kr isotope have been recorded up to
eight times the laser repetition time of 7.9 ns. Only a single transition is resonant
within the bandwidth of the laser pulses, therefore measuring Ramsey signals at two
different ∆N suffices to eliminate common phase shift effects and determine the tran-
sition frequency. We start at ∆N = 2 to avoid transient effects, while the longest delay
is typically chosen at ∆N = 7 for optimal signal-to-noise ratio given the upper-state
lifetime of ∼ 27 ns. At each ∆N the repetition time of the laser is scanned over sev-
eral hundreds of attoseconds to observe roughly two oscillation periods of the Ramsey
signal (see Fig. 4.5). Each Ramsey measurement consists of 15 points as a compromise
between fast data acquisition to avoid systematic drifts and enough points to prop-
erly fit the data. A complete Ramsey-comb measurement requires about 6 minutes
of acquisition time and such a recording is performed in a ”back and forth” sequence.
This means that the even number data points at ∆N = 2 and ∆N = 7 are recorded
first, followed by the odd-numbered data points at ∆N = 7 and ∆N = 2 in reversed
order. This sequence is adopted to suppress the influence from systematic drifts such
as beam pointing. In the ideal case all data points would be sampled in complete ran-
dom order, however, it is experimentally undesirable to make large jumps in the laser
repetition time because it then takes more time for the repetition time to stabilize.
In fact, to avoid such transient effects the first 35 data points after each change in
repetition time are always removed from the analysis.

The fitting and frequency determination from a Ramsey-comb measurement is done
purely on the phase of the recorded time-domain signals as explained in [67, 68]. In this
particular case we are resonant with only a single transition and it therefore suffices
to measure only two Ramsey fringes because the phase evolves linear for a single
frequency. However, analogous to direct frequency-comb spectroscopy, in Ramsey-
comb spectroscopy the frequency is extracted modulo the sampling interval, which in
this particular case (measuring ∆N = 2 and ∆N = 7) is five times the fundamental
laser repetition time, corresponding to 25.2 MHz. This ambiguity can be resolved
by performing measurements at different repetition rates. However, in this case the
transition frequency is known accurately enough from previous measurements to avoid
such ambiguity [63].

The statistical uncertainty of a frequency measurement from the fit is based on
the uncertainty of the individual measurement points, which in turn is determined
by the signal fluctuations over approximately 350 laser shots, again a compromise
between fast acquisition and signal-to-noise ratio. The 1σ statistical uncertainty for
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Figure 4.5: Example of measured Ramsey-signals at ∆N = 2 and ∆N = 7.
At each ∆N the delay time is scanned over ∼ 700 attoseconds (as) and is offset
by ∆N · Trep (see Eq. (4.2)) corresponding to 15.79 ns and 55.28 ns respectively
as indicated in the figure. Each data point is an average over 350 laser shots
and the variation within this set is used to determine the statistical uncertainty
of the data points. The signal is normalized to the maximum signal of the first

Ramsey fringe. The red line is a fit to the data based on Eq. (4.1).
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Figure 4.6: Correlation between the measured phase difference (x-axis) and
the variation of the measured transition frequencies. No clear correlation is
present between between the measured phase shift and the determined transition

frequency.
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one such a Ramsey-comb measurement is around 150 kHz. However, if the transition
frequency is measured over a longer period of time the fluctuations of the results are
larger, by a factor of 1.85, than the 1σ uncertainty based on the short term variation
within one measurement. In order to determine if there is any underlying systematic
effect, much effort has been made to correlate these fluctuations with the parameters
of the experimental setup. One important parameter is the phase difference of the
excitation pulses. Fig. 4.6 shows the variation of the measured transition frequency
(on the y-axis) as function of the the measured phase difference (on the x-axis). From
this figure we conclude that possible variations in the relative phase between the
excitation pulses are not the cause for the observed frequency fluctuations. Similar
results were obtained for correlations with beam pointing of the ultraviolet beam,
intensity fluctuations of the excitation pulses and temperature. One parameter that
cannot be controlled with a high degree of precision is the density of the atomic
beam. Fluctuations in the density on a time scale comparable or longer than the
acquisition time of a single measurement could potentially lead to small distortions
of the Ramsey signal. Taking into consideration the fact that no correlation with
any other experimental parameter could be discovered we conclude that the nature
of the fluctuations is purely statistical. To properly account for the true statistical
uncertainty of a single Ramsey-comb measurement the uncertainty was increased by a
Birge factor of 1.85 which was determined from the variation of the measured transition
frequencies.

4.6 Calibration of systematic effects

Apart from the statistical uncertainty of each single measurement, any effect that
systematically shifts the measured frequency has to be considered carefully. For this
experiment there are several potential sources of such a shift that are discussed sepa-
rately below.

4.6.1 Doppler shift

A misalignment of the laser beams with respect to the atomic beam, or a residual
angle between the counter-propagating laser beams both lead to a residual Doppler
shift. Therefore we align the deep UV beams as parallel as possible by monitoring
the light transmitted through the beamsplitter. This configuration forms a Sagnac
interferometer, and with perfect alignment complete extinction is observed at the
output [129]. A residual first-order Doppler shift can then still be present due to
chirp of the excitation pulses, depending on the trajectory of the atoms through the
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Figure 4.7: Measurement results of the 4p6 →4p55p[1/2]0 transition frequency
in 84Kr. Each data point is an average over ten to twenty Ramsey-measurements
at macro delays ∆N = 2 and ∆N = 7, and the green band shows the 1σ uncer-
tainty of the average. The first-order Doppler shift is determined by measuring
the transition frequency difference for pure Kr with respect to Kr:Ne and Kr:He
mixtures. The color indicates which noble gas was used to speed up the super-

sonic expansion, and the numeral which collision point was used.

laser beams [117]. However, this effect and other Doppler effects are minimized with
a procedure based on measuring the transition frequency for different velocities of
the atomic beam while adjusting the angle between the laser beams and the atomic
beam until no more Doppler shift is observed. For this procedure the speed of the
atomic beam was increased by mixing pure krypton (380(30) m/s) with at least five
times more neon or helium, leading to a Kr velocity of 686(60) m/s and 931(134) m/s
respectively. By extrapolating the measured transition frequencies to zero velocity, the
Doppler-free transition frequency has been determined with a statistical uncertainty
of 58 kHz (see Fig. 4.7). For each velocity class also the 2nd order Doppler shift
was taken into account (2.3 kHz for 380 m/s, 7.4 kHz for 686 m/s and 13.6 kHz for
931 m/s). Furthermore, the measurements were performed in both deep-UV collision
points, giving consistent results.

4.6.2 Phase shift

Another potential source of systematic error is a phase shift difference between the
amplified frequency-comb pulses that depends on ∆N ; it would lead to a frequency
shift

∆f = 8 ·∆φ
2π ·∆N · Trep

(4.3)
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Figure 4.8: (a) Results of the differential phase measurement on the funda-
mental pulses at 850 nm between the ∆N = 2 and ∆N = 7 pulse pairs. The
blue and red part of the amplified pulse spectrum are measured separately from
which the mean shift is calculated and shown in the graph. No significant phase
shift is observed within an uncertainty of 2.1 mrad (indicated with the green
band), corresponding to 35 kHz on the transition frequency. (b) Results of the
AC-Stark shift determination. Each data point represents an average of ten to
twenty measurements. Within the uncertainty of 72 kHz (indicated by the green

band) no shift due to the excitation light field is observed.

where ∆φ is the phase change between the two excitation pulse pairs (with a factor 8 for
using the fourth harmonic on a two-photon transition). The laser system was designed
to keep ∆φ of the amplified pulses as constant as possible as function of ∆N [69].
This is verified by measuring the phase difference between the amplified pulses and
the original frequency-comb pulses with spectral interferometry [67]. Measurement
results of the differential phase shift between ∆N = 2 and ∆N = 7 are shown in
Fig. 4.8a. This shows the combined phases from the ”red” and ”blue” part of the
spectrum contributing to the two-photon transition. There is no significant phase
change within the uncertainty of 2.1 mrad (corresponding to 35 kHz uncertainty for
the transition frequency).

4.6.3 DC-Stark shift

The DC-Stark effect is tested by a comparison of measurements in a static 29.4 V/cm
electric field, and in a zero electric field (<0.17 V/cm), confirming a negligible (<< 1
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kHz) shift in the measured transition frequency.

4.6.4 AC-Stark shift

The AC-Stark shift is suppressed by a factor 100 by keeping the energy of the pulses
constant to 1%. To detect any residual effect we vary the pulse energy deliberately
with a factor of two, and extrapolate the measured transition-frequency difference to
zero intensity. The determined residual AC-Stark of -13 (72) kHz (see Fig. 4.8b) is
consistent with zero. Because the pulse energy was varied by reducing the infrared
intensity, this simultaneously excludes effects induced in the frequency upconversion
stages.

4.6.5 Detector gain shift

The separation of different isotopes in a TOF can be a potential source of systematic
error. Isotopes that arrive early on the detector can modify the detector gain expe-
rienced by the isotopes that arrive later [130]. However, the natural abundance of
82Kr and 83Kr compared to 84Kr is five times less and is therefore expected to have
minimal influence. Any residual effect can be experimentally detected as a variation of
the measured 84Kr Ramsey signal phase when ∆N is changed, caused by the different
Ramsey-signal phases of the other isotopes for each ∆N . No effect was detected on
the 84Kr isotope Ramsey signal when varying ∆N for all values between 2 and 8, with
a resulting uncertainty margin of 25 kHz for the transition frequency.

4.6.6 Zeeman shift

Finally, we tested for a Zeeman shift by applying a magnetic field 8 times higher than
the earth magnetic field. As expected for the mj = 0 states, no shift was detected,
excluding effects with an uncertainty of 13 kHz for the transition.

4.7 Isotope shifts

Our time-of-flight measurement enables to resolve the signals of the different isotopes
(see Fig. 4.3). Therefore we can measure the signal for each isotope simultaneously
with the 84Kr signal using multiple boxcar integrators, each set on one isotope (see
Fig. 4.9). The isotope shift f84Kr − fXKr is straightforwardly extracted from the ob-
served relative phase at one single N . The ambiguity of the isotope shift frequency
due to the comb-mode spacing is solved by a comparison with previous measurements
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that have sufficient accuracy [63]. Some of the potential phase shifts that could influ-
ence the measurement are common-mode in the isotope shift measurement, such as
the AC-Stark shift and (to a large extent) the Doppler-shift.

There is, however, an effect that does influence the measured isotope shift due to
saturation effects of the ion detector. The different bunches of ions for each of the
five isotopes are resolved in time, and give rise to five peaks spanning over roughly
800 ns, as shown in Fig. 4.3. Each peak is equivalent to the detection of approximately
1 to 10 ions within roughly 20 ns. The EDR-CEM detector is not specified for such
high count rates. As a result, the signal from isotopes arriving early in the ToF might
influence the signal from isotopes arriving later. This effect potentially distorts the
Ramsey signal of the heavier isotopes. The situation is even more subtle, because the
Ramsey signal amplitudes of the five isotopes signals evolve differently as function of
delay time. To estimate the influence of the detector we performed the Ramsey-comb
analysis procedure with different pulse delays (i.e. different N). Fig. 4.9 shows the
simultaneous acquisition of the Ramsey fringes for the isotopes 82Kr and 84Kr for N=2
to 7. The isotope shift f84Kr − f82Kr can be extracted from every single N scan. No
systematic dependence on N has been observed for the isotopes 80Kr, 82Kr, 83Kr and
84Kr within the statistical uncertainty of 25 kHz. This uncertainty is quadratically
added with the individual statistical errors giving rise to the following isotopes shifts:
301 847(43) kHz (f84Kr−f80Kr), 152 403(35) kHz (f84Kr−f82Kr) and 98 527(45) kHz
(f84Kr − f83Kr).

However, the 86Kr isotope is strongly affected by the detector saturation effect due
to the high abundance and therefore strong signal of the preceding 84Kr. Significant
time was spend on characterizing this effect, and an attempt was made to model it.
However, the modeling did not have enough predicting power to improve the accuracy.
Therefore we conservatively base our error on the variation seen between the different
measurements at different pulse delays and obtain an 86Kr isotope shift of f84Kr−f86Kr

= -136.40(0.45) MHz.

4.8 Conclusion

Taking all measurements into account (see Table 4.1) we arrive at a frequency of
2,820,833,101,679 kHz with a 1σ uncertainty of 103 kHz (a relative uncertainty of
3.7·10−11) for the 4p6 → 4p55p[1/2]0 transition in 84Kr. This result is 34 times more
accurate and in agreement with the most accurate previous measurement [63], demon-
strating the power of the Ramsey-comb method for transitions in the deep-UV wave-
length range. The accuracy is mainly limited by the short lifetime (27 ns) of the excited
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Figure 4.9: Example of the isotope shift measurements. Multiple Ramsey scans
for 84Kr (solid black line) and 82Kr (dashed blue line) for pulse pairs ranging from
N=2 to N =7 are shown. For each N , the signals of the two isotopes have been
acquired simultaneously. Because of the difference in transition frequency, the
phases of the Ramsey scans evolve differently in time. The isotope shift can be

determined from the relative phase difference at each value of N .

Table 4.1: Contributions to the 4p6 → 4p55p[1/2]0 transition frequency in 84Kr
with their respective uncertainties. All values are listed in kHz.

Contribution Experimental value 1σ
Transition frequency2 2820833101688 58
AC-Stark shift -13 72
DC-Stark effect 0 0
Laser phase shift 1 35
Gain depletion3 0 25
Zeeman shift 3 13
Total 2820833101679 103

state, because that determines the maximum pulse delay. This is particularly promis-
ing for spectroscopy on the EF←X transition in molecular hydrogen, as the excited
state (for vibrational quantum number ν = 0) has a lifetime of 200 ns. Potentially a
frequency accuracy significantly better than 50 kHz might therefore be reached. That
would be two orders of magnitude better than previous experiments [131], providing
new opportunities to test QED and the proton size with H2 molecules. Similarly,
Ramsey-comb spectroscopy of the 1S-2S transition in He+ ions looks promising with
a 1.9 ms excited state lifetime and the sufficiently strong pulses for high-harmonic
generation [100].

In addition to the investigated 84Kr isotope, the other isotopes have been investi-
gated relative to the most abundant 84Kr isotope, see Table 4.2 for the results. This
has resulted in an improvement of the uncertainties for the isotope shifts by a factor
of 6.5, 4.2 and 3.7 for the isotopes 80Kr, 82Kr and 83Kr respectively, compared to
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Table 4.2: Measured isotope shifts in krypton relative to the 84Kr isotope. The
values listed in this table are in kHz.

Isotope Isotope shift
(relative to 84Kr) 1σ

80Kr 301847 43
82Kr 152403 35
83Kr 98527 45
86Kr -136400 450

[63]. The present 86Kr isotope shift determination is less precise than the previous
measurement, due to the saturation effect discussed in Section 4.7. Furthermore, the
improvement in uncertainty is much less compared to improvement on the absolute
transition frequency in 84Kr. This is due to the relative nature of the measurement,
which could already be performed with high accuracy in the previous experiment [63].
This in combination with the relatively short lifetime of the excited state limits the
possible improvement of these determinations.
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5Deep UV Ramsey-comb
spectroscopy of H2 for
fundamental tests of
molecular quantum theory.

5.1 Abstract

Molecular hydrogen and its isotopic and ionic species are benchmark systems for test-
ing quantum chemical theory. Advances in molecular energy structure calculations
enable testing of quantum electrodynamics and potentially a determination of the
proton charge radius from H2 spectroscopy. We have measured the ground state en-
ergy in ortho-H2 relative to the first electronically excited state by laser spectroscopy
on the EF 1Σ+

g (0, 1) ← X 1Σ+
g (0, 1) transition. The resulting transition frequency

of 2 971 234 992 965(73) kHz is two orders of magnitude more accurate than previous
measurements. This paves the way for a considerably improved determination of the
dissociation energy (D0) for fundamental tests with molecular hydrogen.

5.2 Introduction

The fully quantized version of electrodynamics (QED) constitutes an important part
of the Standard Model and is arguably the best tested theory in physics, based (among
other experiments) on spectroscopic measurements of atomic hydrogen [21, 117, 118].
The molecular counterpart, H2, has served as the model system for molecular quan-
tum theory dating back to 1927 when Heitler and London first explained the exis-
tence of a bound state between two hydrogen atoms [132]. Although the increased
complexity of the electronic structure and the additional vibrational and rotational
degrees of freedom impose serious theoretical and experimental challenges, it also
provides additional opportunities to explore new physics. Measurements of various
level energies [131, 133–137] are in excellent agreement with the most recent theoret-
ical predictions [124, 138, 139]. Comparisons between the experimental results and
theory provide constraints on possible physics beyond the Standard Model, such as
hypothetical fifth forces and extra dimensions [120, 125, 140, 141]. In particular the
dissociation energy of molecular hydrogen D0(H2) serves as an important benchmark
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number for molecular quantum physics, and it has stimulated improvements by seven
orders of magnitude in its experimental and theoretical determinations over nearly a
century [142].

On the theoretical side a number of refined calculations have been performed to
verify and improve the initial results [143]. The Born-Oppenheimer potential of H2

was calculated to 10−15 precision [144], the adiabatic correction was improved by three
orders of magnitude to 3×10−7 cm−1 [138], non-adiabatic corrections of rovibrational
levels were calculated to 10−7 cm−1 precision [139], the mα6 QED corrections were
explicitly calculated [52], and methods to solve the Schrödinger equation were im-
proved [51]. This heroic program led to a value of D0(H2)= 36 118.069 1(6) cm−1,
which is more accurate but consistent with the initial value [143]. Moreover, re-
cent breakthroughs in calculating molecular structure and QED now indicate that it
will become feasible to determine the proton-charge radius from a sufficiently accu-
rate determination of D0(H2) [51, 52]. This is particularly interesting in view of the
proton-charge radius puzzle [29, 33, 36, 37, 122].

To obtain an experimental value of D0, it can be related to the ionization energy
EI(H2) via a thermodynamic cycle involving the well known atomic ionization energy
EI(H) and the dissociation energy of the ion D0(H+

2 ) [133]. The value EI(H2) can
be experimentally determined by measuring two frequency intervals by way of laser
spectroscopy, the EF ← X and subsequent 54p11 ← EF transitions. As a third step
in the sequence to determine D0 extrapolation of the np-Rydberg series via millimeter
wave excitation is required [145]. In Fig. 5.1 the level schemes and energy separations
are displayed; the logic of connected experiments has been discussed in [142].

Previous experimental values for D0 [133] were found to be in good agreement at a
level of 0.0004 cm−1 (12 MHz) with molecular quantum calculations [143]. Agreement
was also obtained for D2 [134], and both results featured thereupon in interpretations
in terms of constraints on fifth forces [125] and extra dimensions [141] for typical intra-
molecular distances at the 1 Å scale. The uncertainty in these experiments need to be
improved by two orders of magnitude in order to challenge the latest calculations and
extract a proton-charge radius at the 1 % level.

Moreover, a more accurate determination of the fundamental ground tone (see
Fig. 5.1) would provide an additional test of the most recent improvements in the
calculation of the rovibrational energy levels of the ground state [124, 138, 139]. Direct
excitation of this transition is dipole forbidden in H2, instead the energy splitting can
also be determined from two separate transitions to the common electronically excited
EF 1Σ+

g (v = 0) state (see Fig. 5.1) [146]. For the determination of D0 and the FGT
deep ultraviolet radiation (202 nm and 211 nm respectively) is required to excite the
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Figure 5.1: Energy level diagram of several two-photon transitions from the
ground state (X 1Σ+

g ) to the excited state (EF 1Σ+
g ) in H2. Both the ioniza-

tion energy (Ei) and the fundamental ground tone (FGT) are interesting tests of
molecular QED-theory and are indicated by the red arrows. To determine Ei a
series of experiments is required to couple the EF state to the 54p Rydberg state
and the ionization potential. For the later two steps (indicated with the purple
arrows) new experiments are being developed at the ETH in Zurich. To deter-
mine the FGT two separate excitations to a common excited state are required,
due to the extremely low direct excitation probability. For the measurement
of the FGT and the Ei high-accuracy spectroscopy at wavelengths of 202 and
211 nm is required. To demonstrate the feasibility of these experiments we have
selected the Q1 line (indicated by the dashed green box) because it is three times

more abundant at 300 K.

two photon transitions, making precise measurements difficult.
In this chapter we report on the determination of the EF 1Σ+

g -X1Σ+
g (0,0) Q1 tran-

sition in H2 by employing Ramsey-comb two-photon spectroscopy [67, 147] in the
deep ultraviolet at 201.80 nm (see Fig. 5.1), which is, as discussed before, an essen-
tial ingredient for determining D0(H2) and the FGT . Although ultimately a higher
precision could be achieved for para-H2, due to the absence of hyperfine structure,
this transition was selected because of the three times higher natural abundance of
ortho-H2 compared to para-H2 at room temperature. We demonstrate a fractional
uncertainty of 2.5 ·10−11, achieving a two and three orders of magnitude improvement
over previous measurements [148, 149].
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5.3 Ramsey excitation with frequency comb pulses

The method of Ramsey-comb spectroscopy [67, 147] combines Ramsey’s method of
separated oscillatory fields [65] with frequency comb lasers [56, 70]. It is based on
interference between two excitation contributions in an atom or molecule induced by
two time-delayed coherent laser pulses. This leads to a variation of the excited state
population (|ce|2) as a function of pulse delay (t) and pulse phase difference (∆φ)
according to:

|ce(t,∆φ)|2 ∝ cos (2πftrt+ ∆φ) (5.1)

The transition frequency (ftr) can be determined from this signal, provided that t and
∆φ are known with sufficient precision [63, 100]. Frequency comb lasers are therefore a
convenient source of light pulses as their repetitive pulsed output (with spacing Trep)
and controlled phase slip between successive pulses (the carrier-envelope phase slip
∆φceo) can be referenced with high accuracy to an atomic clock.

To increase the pulse energy of frequency combs for nonlinear frequency upcon-
version, amplification and enhancement resonators have been employed to increase
the pulse energy to the µJ level at full repetition rate [60–62, 150]. In contrast, our
method relies on the amplification of only two pulses, enabling orders of magnitude
higher pulse energy (>mJ). By choosing pulse pairs with a delay of multiples of Trep,
and scanning the pulse delay on a much smaller scale using adjustments of Trep via
the comb laser, a series of Ramsey signals starting at time delays t = T0 = ∆NTrep
is obtained. Here ∆N is an integer, denoting the delay expressed in the number of
comb laser pulses. Combining a series of Ramsey signals for different ∆N constitutes
a Ramsey-comb measurement [147]. The transition frequency is obtained from it by
analyzing only the relative phase evolution between the Ramsey signals [68]. As a
consequence, the measurement becomes insensitive to any phase shift that is indepen-
dent of ∆N . This includes a possible constant phase shift caused by amplification and
nonlinear upconversion of the frequency-comb pulses, and also phase shifts induced in
the atom by the laser-atom interaction (the AC-Stark shift), provided that the pulse
energy is constant as function of ∆N . The accuracy of the method is mainly limited
by the maximum time delay that one can experimentally achieve and the accuracy of
how constant ∆φ is as a function of ∆N .

5.4 Experimental setup

The starting point of the experiment is a Kerr-lens mode-locked Ti:Sapphire frequency
comb which runs at a repetition time of 7.9 ns. Both Trep and ∆φceo are actively
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stabilized and referenced to a cesium atomic clock (Symmetricon CsIII 4310B) to pro-
vide absolute time and frequency calibration. The pulses are chirped by 2.5 × 106 of
2nd-order dispersion in a 4f-grating based stretcher. In addition, an adjustable slit
placed in the Fourier plane of the stretcher that selects only 0.2-0.3 nm bandwidth
of the original spectrum centered around 807.18 nm, resulting in pulses of approxi-
mately 10-15 ps long and 0.8 pJ. Such a small bandwidth is chosen to avoid excitation
of the nearby Q0 and Q2 lines which are at respectively 806.73 and 808.09 nm of
the fundamental frequency-comb wavelength (see Fig. 5.1). Only two of these pulses
are selectively amplified in a noncollinear optical parametric chirped-pulse amplifier
(NOPCPA) upto a pulse energy of 2.4 mJ . The pump pulses for the NOPCPA are
derived from a separate Nd:YVO4 based mode-locked oscillator that is synchronized
with the frequency-comb laser. From this oscillator a pulse pair is selected using fast
modulators, and subsequently amplified upto 28 mJ (for more detail see [69, 105] and
Chapter 3). These pulses are frequency doubled to 532 nm providing two nearly iden-
tical pump pulses of 75 ps pulse duration. The complete laser system that produces
the two amplified frequency-comb pulses with an adjustable time delay is referred to
as the Ramsey-comb laser system in Fig. 5.2.

The amplified frequency-comb pulses are frequency doubled to 403.59 nm in a
0.5 mm thick β-barium-borate (BBO) crystal. Subsequently, the fundamental 807.18 nm
and the doubled 403.59 nm radiation are together up-converted to 269.07 nm by sum-
frequency generation in a 0.8 mm thick BBO crystal. Then the 269.07 and 807.18 nm
are mixed together in 0.3 mm BBO to produce the required 201.80 nm radiation.
Before the two mixing stages custom waveplates are placed to be able to orient the
polarization of the 807.18 nm, 403.59 nm and 269.07 nm with respect to the optical
axis of the BBO crystals. In this configuration we produce upto 62.3 µJ pulse energy
in a beam with a FWHM diameter of 1.2 mm (a schematic overview of the setup is
depicted in Fig. 5.2).

The ultraviolet radiation is split in two equal parts to excite the transition in a
counter-propagating configuration in order to suppress the first-order Doppler shift.
The beams are aligned as parallel as possible using the output of the beamsplitter,
which forms a Sagnac interferometer [129]. With linear polarized light the two-photon
transition may also be excited from just a single side, which gives rise to a Doppler
broadened and shifted background. To circumvent this issue a quarter wave plate
is placed in both arms in order to convert linear to circular polarization. Together
with the strong chirp on the pulses [127, 151], this suppresses the unwanted (Doppler
shifted) excitation from a single side by a factor of ten. The intersection point of the
ultraviolet pulses is crossed at right angles with a beam of hydrogen molecules. The
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Figure 5.2: Schematic overview of the frequency conversion and excitation ge-
ometry of the experimental setup. The amplified frequency-comb pulses from
the Ramsey-comb setup are passed through a λ/2 waveplate and thin-film po-
larizer (tfp). Then they are up-converted in sequential stages of type I frequency
doubling and mixing in BBO. In between the frequency up-conversion stages
special waveplates are situated to match the polarization of the fundamental
and up-converted light to the optical axis of the BBO crystals. The resulting
beam of 201.80 nm radiation is split in equal parts by a metallic beamsplitter
(BS). The deep ultraviolet beams are aligned as parallel as possible using the
fringes observed at the output of the beamsplitter, which forms a Sagnac in-
terferometer (SI). After the last excitation pulse an ionization pulse is applied
that state selectively ionizes the H2. The ions are then extracted upwards in a
time-of-flight drift tube and detected with a electron multiplier. The molecular
beam is formed from a pulses supersonic expansion of H2 which is collimated by

a skimmer 0.5 mm aperture and a slit of 3 mm width.

molecular beam of H2 is generated from a pulsed supersonic expansion from a nozzle
operated at 3 bar backing pressure (Parker General Valve series 99). Its divergence
is determined by the geometry of a skimmer of 0.5 mm aperture placed 3 cm behind
the nozzle and a slit of 3 mm width situated 24 cm after the skimmer. The valve was
fitted with a home build liquid nitrogen (LN2) cooling system and a modified plunger
to be able to operate at temperatures below 100 K. By cooling down the valve the the
velocity of the molecules in the supersonic expansion can be slowed down.

Exactly 5 ns after the second excitation pulse an ionization pulse of 355 nm wave-
length is applied that state-selectively ionizes the molecular hydrogen. The created
H+

2 ions are extracted upwards through a 25 cm time-of-flight drift tube and detected
with an electron multiplier (ETP electron multiplier AF880). The electric fields used
to accelerate the molecular hydrogen ions is ramped up after the ionization pulse to
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ensure field free excitation. The ion signal is the measured with a boxcar integrator
(Stanford Research SR250) and subsequently digitized. The excitation and detection
sequence is repeated at an interval of 35 ms.

5.5 Parametric amplifier phase shift

Both pump pulses for the NOPCPA are derived from the same cycle in the amplifica-
tion process of the pump pulses. Therefore the two pump pulses will not be exactly
equal and influence the frequency-comb pulses differently. This causes a phase shift
(δφ) between the amplified frequency-comb pulses that can potentially lead to a shift
of the measured frequency. In fact, the absolute magnitude of the phase shift can be
on the order of a few hundred mrad. However, in a Ramsey-comb measurement this
does not translate into a frequency shift if δφ is constant as function of the time delay
between the pulses. Any residual linear phase shift (δφrel) as function of the pulse
time delay (∆NTrep) will give rise to a frequency shift (δf) according to:

δf = 8δφrel
2π∆NTrep

(5.2)

The factor 8 accounts for the 4th harmonic generation and the two photons that
contribute to the excitation. To ensure that the measurement is not affected by such
a frequency shift, the phase shift between the excitation pulses in the infrared is
measured using spectral interferometry. A small amount of the original frequency-
comb pulse is split off before the NOPCPA and is later recombined its amplified
counter part with an adjustable time delay (on the order of a few ps). The spectral
interference is recorded by projecting the first and second excitation pulse separately
on a CCD camera in a grating based spectrometer. The phase difference can then be
determined from such a recording [69]. An example of such a phase measurement is
shown in Fig. 5.3. The phase shift δφ is around -203.5 mrad and the round (grey)
data point indicate different measurements. The uncertainty on the round (grey)
data points is the statistical uncertainty determined from the variation of the phase
shift over 750 laser shots, corresponding to 27 seconds acquisition time and a total
acquisition of 3.5 hours. To suppress the influence of any systematic drift, the time
delay step (∆N × Trep) was scanned linearly up and down and in random order for
different measurements. The diamond-shaped (red) data points are the average of the
individual measurements at each time delay.

The resolution of the spectrometer is limited by the spacing of the lines on the grat-
ing and the size of the beams. Therefore it becomes increasingly difficult to measure
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Figure 5.3: Measurement example of the phase shift between the two excitation
pulses in the infrared. The round data points (grey colored) are an average of
750 laser shots and the error bar indicates the statistical uncertainty based on
the variation within that set. To suppress systematic drift, the step size in ∆N
was varied differently for different measurements and the total time to acquire all
data is 3.5 hours. The diamond-shape data points (red colored) are the average

of the individual measurements at each time delay.

the phase difference for an ever smaller bandwidth with any realistic setup. Moreover,
spreading out the spectrum over a larger part of the CCD to increase the resolution
will lower the total intensity of the light available per pixel. This is not a prob-
lem for the amplified pulses but is a limiting factor for the reference pulses from the
frequency-comb, leading to a poor signal-to-noise ratio. The Ramsey-comb measure-
ments presented in this paper are typically acquired using 0.2-0.3 nm bandwidth and
is therefore particularly challenging for an accurate phase measurement. To deter-
mine the phase variation over the time delays that we probe in this experiment we
have measured the phase effects for different bandwidths. Measurements of the phase
evolution as function of time delay for bandwidths ranging from 0.4 to 3 nm are shown
in Fig. 5.4. From these measurements we conclude that there is no systematic change
in the operation of the NOPCPA with respect to the phase as function of bandwidth.

If one assumes a linear relation of the relative phase shift as function of time delay
the frequency shift can be determined according to Eq.5.2. As an example we have
plotted a phase measurement for ∆λ = 0.4 nm in Fig. 5.5. This measurement was
taken under the same conditions as the data presented in Fig. 5.3. The blue line is a
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Figure 5.4: Measurements of the relative phase shift between the first and
second excitation pulse in the infrared as function of delay time between the
pulses. The measurements were done by operating the NOPCPA at various
bandwidths ranging from 3 down to 0.4 nm, indicated by the different markers
(and colors). No systematic change as function of bandwidth can be observed

from this data.

linear fit through the data and from the slope a systematic frequency shift of -10 kHz
is determined based on Eq.5.2. The two green lines are also linear fits through the data
but with an adjusted slope such that the reduced χ2 of the fit is ≤ 1. Therefore, based
on this data the slope cannot be determined more accurate than indicated by the blue
shaded area in Fig. 5.5. As a result we interpret the uncertainty on the slope as 39 kHz.
The same analysis was done for the measurements all the measurements presented in
Fig. 5.4 and the results range from a frequency shift between -26 kHz and 42 kHz, all
with an uncertainty close to 40 kHz. Because the measurements at 0.4 nm bandwidth
most closely represents the conditions during the Ramsey-comb measurements, these
results are averaged together resulting in a frequency shift of 14(40) kHz due to the
amplifier induced phase shift. In this procedure we assumed an upper limit of 40 kHz
uncertainty based on the uncertainty of the individual measurements.
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Figure 5.5: A measurement under similar conditions as presented in Fig. 5.3.
The blue line is a linear fit to the data and based on the slope of this fit the
frequency shift can be determined. The green lines are also linear fits through
the data that have the maximum slope but still fit the data with a reduced χ2

of one. Based on this data the frequency shift cannot be determined with an
accuracy better than indicated by the blue shaded area within the green fits to
the data. These maximum values are taken as the uncertainty on the frequency

shift.

5.6 Results and systematic errors

In Fig. 5.6 an example of a Ramsey-comb measurement is shown where the pulse
delay is varied upto a maximum delay time of 380 ns, corresponding to a separation
of ∆N = 48 pulses. At each ∆N the repetition time is scanned over a range of
600 attoseconds to observe ∼ 1.5 period of the Ramsey signal. The uncertainty of
the data points is based on the fluctuations of the ion signal averaged over 500 laser
shots. The reduction of the signal and modulation contrast as a function of delay is
caused by effects such as the laser linewidth, Doppler broadening, transit time, and
the lifetime of the excited state (≈200 ns [152]). A typical Ramsey-comb measurement
consists of sets of three or four Ramsey-scans over a maximum time delay between
181 and 221 ns, which is chosen for optimal signal-to-noise ratio and speed of a single
measurement to minimize the influence of drifts. To avoid a systematic effect on
the frequency determination we always skip ∆N = 1 to bypass any transient effects,
and the measurements were performed in random order, spread out over many days.
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One Ramsey-comb measurement typically has a statistical uncertainty of 45 kHz (for
details on the signal analysis procedure see [68]). However, the observed transition
frequencies fluctuated more than expected based on the 1σ uncertainty of a single
measurement. Because no statistically significant correlation could be found with any
of the experimental parameters, the uncertainty of each measurement was increased by
a Birge factor [153, 154] of 1.9 to correctly account for the true statistical uncertainty.
Apart from the statistical uncertainty and the influence of the phase of the excitation
pulses the measured frequency can also be influenced by a number of systematic effects.
These effects are addressed separately in the subsections below.

The frequency determination of such a measurement is done purely in the time-
domain, based on the phase of the Ramsey signals (for detail see [68]). The phase
of each Ramsey fringe is determined by fitting a cosine to the individual Ramsey
fringes with a fixed initial guess frequency but variable phase, based on Eq. (5.1).
The frequency is then determined by a least-square fitting algorithm based the phase
difference between the measured phases and phase evolution of the guess frequency.
Because we are only resonant with a single transition in the H2 molecule, it would
suffice to measure only three Ramsey fringes to determine the frequency and a global
phase shift. In practice if the mode spacing of the individual measurements becomes
too large it will be difficult to assign the right mode for the frequency determination,
in that case measuring more Ramsey fringes might be required.

Complementary to the time domain Ramsey-comb signal we can obtain a spectrum
by fast-Fourier transformation of the data from Fig. 5.6 leading to the spectrum in
Fig. 5.7. The frequency-axis spans exactly the fundamental repetition rate of the
frequency-comb laser (126 MHz). The recurrence of the signal within this range is
caused by the sub-sampling of the Ramsey-signals at an interval of ∆N = 5. This
graph illustrates the connection with traditional direct frequency comb spectroscopy
where the the signal is convolution of resonance with the comb spectrum giving rise
to spectral features that repeat at the repetition rate. In this case (as detailed in
Section 2.2.2) the comb spectrum is reconstructed by combining the Ramsey signals
from different time delays giving rise to the spectrum. Similarly to the traditional
direct frequency-comb spectroscopy the correct mode needs to be assigned for which
the investigated resonance transition needs to be known sufficiently accurate. If this
is not the case the ambiguity might be solved by repeating the measurement at a
different repetition rate, as is the case for normal direct frequency-comb spectroscopy.
The best value currently known for the Q1 transition is indicated with the green data
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Figure 5.6: An example of a Ramsey-comb measurement with a mode spacing
∆N = 5. The decay of contrast of the Ramsey fringes as function of time delay
is clearly visible. The red line through the data is a fit based on a fixed frequency
but adjustable phase. The phases of the Ramsey-fringes are then used for the
determination of the transition frequency. The error bars of the individual data
points are based on the variation of the ion signal over 210 laser shots and all
the Ramsey fringes are normalized to the maximum signal of the first Ramsey

measurement.

point and is in this case sufficiently accurate 1. Also plotted in this graph are the
positions of the Q0 (yellow) and Q2 (red) transitions [148]). From this graph we can
also conclude that we are resonant with only one transition, this is important for the
analysis because if not taken into account properly can cause a shift of the extracted
frequency, see [68].

5.6.1 Doppler shift

The speed of hydrogen molecules from a supersonic expansion at 311 K is 2530 m/s [155,
156]. Because of this, the Doppler effect is one of the more prominent effects that has
a systematic influence on the measured transition frequency. The measured frequency
is given by:

fmeas = f0 + k · v
2π −

v2

2c2 f0 (5.3)

1Admittedly, there is some room for debate, based on Fig. 5.7, whether we probe Q1 or Q0.
However, measurement we also performed with a spacing of ∆N = 1 providing the necessary resolu-
tion. Moreover, already the measurement of the wavelength of the fundamental light provides enough
resolution and forms a nice consistency test.
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Figure 5.7: The fast-Fourier transform of the data presented in Fig 5.6. The
x-axis spans exactly the fundamental repetition frequency of the frequency-comb
laser. The recurrence of the signal is due to the mode spacing of ∆N = 5
used during this measurement. The orange, green, and red data points indicate
the best measurement thus far of the Q0, Q1, and Q2 line respectively. The
figure shows that the bandwidth we use is small enough to only excite a single
transition and that in this case we are resonant with the Q1 transition. This is

also confirmed by measuring the spectrum of the infrared pulses.

where f0 is Doppler-free transition frequency and k = 2πflaser

c k̂ is the wave vector of
the excitation laser and v = vv̂ is the speed and direction of the molecules. In this
formula the term that is linear with the speed of the molecules is called the first-order
Doppler shift and the term that is quadratic with the speed of the molecules is called
the second-order Doppler shift. Although the excitation geometry strongly suppresses
the first-order Doppler shift, a residual first-order Doppler shift can still be present
due to an asymmetry in the spectrum, a chirp induced first-order Doppler shift [117]
or a residual angle between the two counter-propagating beams. The latter leads to a
first-order Doppler shift according to:

∆f = f0‖v‖
c

sin(θ2) (5.4)

where θ is a small angle between the two excitation beams. To minimize this effect
we align the counter propagating beams as parallel as possible by observing a dark
fringe at the output port of the Sagnac interferometer (see Fig. 5.2). Observing a
dark fringe means that period of the fringes is bigger than the diameter of the beam,
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and the angle can then be aligned better then θ < λlaser

2d [129]. In practice we can
observe the beam at the output port with a size on the order of 4 mm diameter, it
therefore means that we cannot guarantee an aligned of the system with a precision
better than 318 kHz. In addition, also the chirp of the pulses will effectively give rise
to a first-order Doppler shift depending on the path the atoms travel through the laser
beam [117]. To calibrate the first-order Doppler shift measurements were performed
at two velocities of the molecular beam. The molecules were slowed down by cooling
the nozzle using liquid nitrogen leading to a temperature of the nozzle of 97 K. For
both temperatures an uncertainty in the velocity of ±10% was taken into account.
The Doppler-free transition frequency can then be determined by extrapolating the
measured transition frequencies to zero velocity. In this procedure the second-order
Doppler shift correction of 107 and 33 kHz for 2530 and 1420 m/s was taken into
account. Furthermore, the system was always aligned such that the observed frequency
difference was as small as possible, although this could vary within±200 kHz. In total 7
sets of measurements were obtained to determine the Doppler-free transition frequency,
each consisting of 20 or more Ramsey-comb measurements at both temperatures (and
therefore velocity). All measurements are in agreement with each other within the
statistical uncertainty, leading to a weighted average of all measurements (before other
corrections) of 2 971 234 992 948(60) kHz.

5.6.2 AC-Stark shift

Although the Ramsey-comb method is to first order insensitive to effects proportional
to the pulse energy (such as the AC-Stark effect or phase shifts in the upconversion)
a residual light shift might still be present. We test this by measuring the transition
frequency at pulse energies of 18 µJ and 62 µJ (the energy at which all other mea-
surements were performed, within 5%). Extrapolation to zero intensity then gives the
shift at 62 µJ pulse energy. In total 91 determinations of this kind are taken into
account, each consisting of at least four Ramsey-comb measurements (Fig. 5.8). The
resulting light shift correction is 3(13) kHz, showing that the Ramsey-comb method
is for all practical purposes AC-Stark shift free.

5.6.3 DC-Stark shift

A DC-Stark shift is avoided by ramping-up the ion-extraction fields after the ion-
ization pulse. The uncertainty for any residual electric field during the excitation is
±0.17 V/cm. By comparing with measurements at a static electric field of 8.33 V/cm
we determined a possible frequency shift of 0(2) kHz due to dc electric fields.
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Figure 5.8: Measurement of the ac-Stark shift in molecular hydrogen. The dif-
ferent colors indicate measurement taken on different days. Each measurement
consists of at least four Ramsey-comb measurements taken between 18 µJ and
62 µJ and extrapolated to zero intensity. These measurement show no measur-

able ac-stark shift within a statistical uncertainty of 13 kHz.

5.6.4 Zeeman shift

To avoid a possible Zeeman-shift the magnetic field is measured and minimized with
additional coils to a precision of 0.2 G. A possible shift due to a residual magnetic
field was determined by comparing with measurements at a magnetic field strength of
6 G in directions parallel and orthogonal to the polarization of the excitation pulses.
No Zeeman-shift was detected, leading to an uncertainty due to this effect of 2 kHz.

It should be considered that for ortho-hydrogen the total nuclear spin I = 1, which
leads to hyperfine structure in the Q1 line. The splitting in the ground state is too
small (≤ 500 kHz) to be observed [157], and in the excited state unknown. Therefore
the presented value is a weighted average of the hyperfine components of the Q1
line. The Q0 transition from the true ground state in para-hydrogen does not have
hyperfine structure, but is three times weaker due to spin statistics. For this reason
Q1 was measured in the current and previous experiments.

5.7 Conclusion

Taking all effects into account results in a transition frequency of 2 971 234 992 965(73) kHz
for the EF 1Σ+

g -X1Σ+
g (0,0) Q1 transition in ortho-H2 (see Table 5.1). The relative

uncertainty of this result is 2.5 · 10−11, and is in agreement with the previous mea-
surement [148], but two orders of magnitude more accurate (see Table 5.2). The new
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Table 5.1: Contributions (in kHz) to the measurement of the EF 1Σ+
g (0, 1) ←

X1Σ+
g (0, 1) transition in H2. The Doppler-free transition frequency is obtained

by the procedure described in the Section 5.6.1. The light induced effects include
the AC-Stark shift and non-linear effects.

Measured value (1σ)
Doppler-free transition frequency 2971234992948 (60)
Light induced effects 3 (13)
DC-Stark shift 0 (2)
Zeeman shift 0 (2)
Amplifier phase-induced shift 14 (40)
Total 2971234992965 (73)

two-photon transition frequency of the Q1 line of ortho-hydrogen can be used to obtain
an improved value for the (rotationless) dissociation energy D0(H2) of para-hydrogen,
using the procedure from [133]. The result is consistent with previous experimental
determinations and theory, as shown in Table 5.2.

However, in a recent study a complete calculation of the relativistic corrections
was targeted to reach a full-fledged molecular quantum calculation [158]. In [143] the
relativistic correction was partially based on an older study [159]. The new refined
calculation surprizingly produces a disagreement of 50 MHz (0.0017 cm−1) with the
previous and current experimental values, equal to 2.4 σ (see Table 5.2). However, as
the authors state, this disagreement is to be considered preliminary since relativistic
nuclear recoil corrections have not yet been reliably calculated. Our result now shows
that possible deviations are not due to measurements of the EF −X interval, given
its new highly accurate value.

The full potential of our measurement can only be reached if the energy separation
between X+ − EF is improved to a level comparable with 70 kHz or better, to bring
down the uncertainty of D0 (H2). This will enable to put further constraints on the
strength of fifth forces [140] and on the compactification sizes of extra dimensions [141].
Moreover, given the ≈200 ns lifetime of the excited state it seems feasible to ultimately
reach 10 kHz accuracy on the Q0 transition (instead of Q1 to eliminate the influence
of hyperfine structure). A theoretical and experimental comparison at this level would
enable a determination of the proton-charge radius with an accuracy of 1%, therewith
resolving the proton-charge radius puzzle. Furthermore, another benchmark test of
molecular quantum theory, the determination of the fundamental ground tone splitting
(see Fig. 5.1), can be considerably improved now with a measurement of the EF 1Σ+

g -
X1Σ+

g (0,1) Q1 transition.
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6Outlook

The experiments described in this thesis had two main objectives. The first was to
demonstrate that the Ramsey-comb method can be applied in the deep ultraviolet after
frequency upconversion of the amplified frequency-comb pulses. The second objective
was to then measure a transition that is relevant for tests of QED or molecular quantum
mechanics. The experimental results achieved with krypton and molecular hydrogen
demonstrate that the amplified frequency-comb pulses can be upconverted efficiently
and used for high-precision spectroscopy. Concerning the second goal, the energy
levels of krypton are not very interesting regarding QED because calculations for such
a many-electron system cannot be performed at (or even close to) the same level of
accuracy as the measurements. In contrast, transitions in molecular hydrogen are
actually useful to perform tests for molecular QED. However, the measured transition
still requires additional measurements before a ’direct’ test of molecular QED can be
performed through a comparison of the dissociation limit. Nonetheless, the results
presented in this thesis show the feasibility of experiments on transitions that can lead
to new and improved tests of (molecular) QED calculations.

6.1 Molecular hydrogen

One interesting transition that can readily be investigated with the current setup is
the EF (ν = 0) ← X(ν = 1) transition in molecular hydrogen. By combining this
value with the measurement presented in this thesis on the EF (ν = 0) ← X(ν = 0)
transition a better determination of the fundamental ground tone (first vibrational
energy splitting) can be achieved (see also Fig. 5.1). Progress on the theoretical
side in recent years has led to accurate ab initio calculations for the entire ground
state rovibrational manifold [124, 143]. Therefore a measurement of the fundamental
ground tone can directly be compared to calculations providing a stringent test of
molecular QED, and can even provide constraints on possible physics beyond the
Standard Model, such as hypothetical fifth forces and extra dimensions [120, 125, 140,
141]. Although the required wavelength can be obtained in a fairly straightforward
way, the difficulty of this experiment is in the low abundance of molecules that are in
the ν = 1 excited state. One route to enhance the population of this state is to make
an electric discharge at the exit of the nozzle for the molecular beam. This experiment
has been performed by our group based on a completely different laser system [131].
To limit the uncertainty due to the Doppler shift, now the largest contributor to

101
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the error budget, it is desirable to redesign the molecular beam line. Especially the
distances and size of the first skimmer with respect to the nozzle can be improved to
obtain a much better collimated molecular beam and avoid ’skimmer clogging’. It is
feasible to reach a similar accuracy for this transition as presented in this thesis, and
this would lead to a two orders of magnitude improvement of the fundamental ground
tone energy accuracy. In addition, similar studies on the isotopes of hydrogen would
provide additional tests without having to change much in the experimental setup.

6.2 Extension to the XUV: Towards spectroscopy
on the 1S-2S transition in He+

Helium is also a very interesting candidate but an even more challenging element for
precision tests QED. It is interesting because helium has a higher nuclear charge,
compared to hydrogen, which leads to an increased contribution of higher-order QED
corrections [46]. The challenge on the theory side in neutral helium is the coupling be-
tween the two electrons which limits the precision of the calculations. Therefore more
interesting is the singly-ionized helium atom, and in particular the 1S-2S transition.
The simplicity of the one-electron system allows for highly accurate calculations of
the energy levels and a comparison with theory would provide stringent tests of these
calculations. Moreover, in combination with measurements in µHe+ [47], it would
provide a similar comparison as was made between electronic and mouonic hydro-
gen [29](see Fig. 1.1). Muonic systems have the added benefit that the nuclear size
effects are nearly 2 orders of magnitude stronger compared to hydrogen [46]. The main
reason that singly-ionized atomic helium has not been excited on the 1S-2S transition
yet is that it requires XUV radiation to excite the two-photon transition. To add to
the complexity of the experiment, in order to control the systematic effects the helium
ions need to be trapped and sympathetically cooled [160]. With the Ramsey-comb
method it is now feasible to generate enough flux at the required XUV wavelengths
via high harmonic-generation (see e.g. [161]) and perform ultra precise measurements.
At the time of writing, a vacuum setup for XUV generation based on 2 amplified comb
pulses (and refocusing of the generated light) has been constructed, and high harmon-
ics have been produced. The next step is to demonstrate Ramsey-comb excitation in
the vacuum- or extreme-ultraviolet with it, and ultimately to use it to measure the
1S-2S transition in He+ with 1 kHz or better accuracy.
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AExcitation with two phase
coherent laser pulses

In order to understand and analyze the Ramsey-comb signals the interaction of a two-
level quantum system with an electromagnetic field close to resonance is analyzed.
The interrogated atoms or molecules can be approximated as a two level the quantum
system, where the eigen energies of the two states are called E1 and E2, which are
separated by an energy interval ∆E = E2 − E1 = }ω0. The zero point energy can be
chosen such that E2 = −E1 = }ω0

2 . The time evolution of such a system is governed
by the time-dependent Schrödinger equation:

i}
∂

∂t
Ψ(r, t) = H(t)Ψ(r, t) (A.1)

where the atom is represented by the wave function or state vector

Ψ(r, t) = c1(t)ψ1(r) + c2(t)ψ2(r) ≡ |Ψ〉 = c1(t)|1〉+ c2(t)|2〉 (A.2)

Here the two eigenstates are labeled |1〉 and |2〉 respectively and normalization requires
|c1(t)|2 + |c2(t)|2 = 1. To determine the state vector |Ψ(t)〉 after a certain time t, the
coefficients cn(t) need to be determined (from now on the time dependence will be
omitted but is assumed implicitly). For this the Schrödinger equation needs to be
solved for the appropriate Hamiltonian. The Hamiltonian can be separated in a time-
independent and a time dependent term

H(t) = H0 +Hint(t) (A.3)

where the time-dependent term describes the interaction with an oscillating electric
field that perturbs the eigenfunctions of the time-independent H0. The unperturbed
eigenvalues of H0 are just the atomic energy levels (neglecting spontaneous emission,)
and the state vector should satisfy

H0|Ψ〉 = E|Ψ〉 = −}ω0

2 |1〉+ }ω0

2 |2〉 (A.4)

In this basis the Hamiltonian of the free atom can be written as

H0 = }ω0

2 (|2〉〈2| − |1〉〈1|) (A.5)
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and a convenient choice for an operator basis in this space is

1 = |1〉〈1|+ |2〉〈2| (A.6)

σz = |2〉〈2| − |1〉〈1| (A.7)

σ+ = |2〉〈1| (A.8)

σ− = |1〉〈2| (A.9)

If we apply these operators to some arbitrary state |Ψ〉 = c1|1〉+ c2|2〉 we get

σz|Ψ〉 = c2|2〉 − c1|1〉 (A.10)

σ+|Ψ〉 = c1|2〉 (A.11)

σ−|Ψ〉 = c2|1〉 (A.12)

The physical meaning of the (non Hermitian) operators σ+ and σ− is that they gener-
ate transitions from the ground to the excited state and vice versa. The operator σz is
Hermitian and its expectation value therefore an observable quantity. The operators
σ+ and σ− can be replaced by the Hermitian operators σx,y

σx = σ+ + σ− (A.13)

σy = −iσ+ + iσ− (A.14)

The operators σx,y,z are also called the Pauli matrices and will be used later in the
evaluation. In this basis we can now write the Hamiltonian of the free atom as

H0 = }ω0

2 σz (A.15)

The Hamiltonian for the interaction of an atom with the electromagnetic field can
be derived from the coupling between a charged particle of mass m and charge q at
the position r with the electric field E(r, t) of an electromagnetic wave. Note that
in frequency standards (atomic clocks) also other relevant types of interactions, e.g.
magnetic dipole and electric quadrupole have to be considered at the extreme precision
that can now be reached. However, in this description we only look at the lowest order
interaction. The electric dipole moment d is determined by the position operator r
through

d = −e0r (A.16)
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En
er

gy

Figure A.1: Schematic picture of a two level atom with energies E1 and E2
that are separated by an energy interval of }ω0. The frequency of the applied
field is indicated by ωl. The detuning of the laser with respect to the resonance

(∆ω) is defined in Eq. A.32

where e0 is the elementary charge. The expectation value for the dipole moment of
an atom in an arbitrary state is equal to

〈Ψ|d|Ψ〉 = −e0
(
|c1|2〈1|r|1〉+ |c2|2〈2|r|2〉+ c1c

∗
2〈2|r|1〉+ c2c

∗
1〈1|r|2〉

)
(A.17)

Atoms (but also some molecules) do not have a permanent dipole due to symmetry,
therefore the state dipole moments 〈n|r|n〉 are equal to zero and only the transition
dipole moments remain. This results in

〈Ψ|d|Ψ〉 = −e0 (c1c∗2〈2|r|1〉+ c2c
∗
1〈1|r|2〉) (A.18)

By defining the dipole moments that connect the ground and excited state as

d12 = e0〈1|r|2〉 d21 = d12
∗ = e0〈2|r|1〉 (A.19)

and using the definitions of σ+ and σ−, Eq. A.18 can be re-written as

〈Ψ|d|Ψ〉 = −〈Ψ|d12σ
− + d21σ

+|Ψ〉 (A.20)

Since this holds for an arbitrary state the dipole operator can be represented as

d = −
(
d12σ

− + d21σ
+) (A.21)
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The Hamiltonian of an induced electric dipole by an external electromagnetic field is
given by

Hint = −d · E(r, t) (A.22)

If we assume monochromatic radiation then the electric field at the position of the
atom r0 is described by

E(r0, t) = 1
2E0e

iωltê+ E∗0e
−iωltê (A.23)

where ωl is the (angular) frequency of the radiation, E0 the complex amplitude of
the field and ê denotes direction of the polarization. Plugging this and the previously
defined d into Eq. A.22 and using the definition for the Rabi frequency

ΩR ≡ Ω = E∗0
2} d21 · ê (A.24)

leads to an expression for the interaction Hamiltonian as:

Hint = }σ−
(
Ω̃∗eiωlt + Ω∗e−iωlt

)
+ }σ+ (Ω̃eiωlt + Ωe−iωlt

)
(A.25)

With this the full Hamiltonian can be written down as

Htot = }
(ω0

2 σz +
(
Ω̃∗eiωlt + Ω∗e−iωlt

)
σ− +

(
Ω̃eiωlt + Ωe−iωlt

)
σ+
)

(A.26)

In the ”Schrödinger picture” the operators are fixed while the Schrödinger equation
changes the state vectors with time. In order to go to this picture we remove the time
dependence from the interaction Hamiltonian by applying the unitary transformation
that describes a rotation at the frequency of the applied electromagnetic field

U = e
−iωl

2 t|1〉〈1|+ e
iωl
2 t|2〉〈2| (A.27)

which relates the initial state |Ψ〉 to the transformed state |Ψ̄〉 via the multiplication

|Ψ(t)〉 = U |Ψ̄(t)〉 (A.28)

By inserting this transformation into the Schrödinger equation and by multiplying the
equation from the left with U† we find the transformed Hamiltonian to be

i}U†(∂tU |Ψ̄〉+ U∂t|Ψ̄〉) = U†HtotU |Ψ̄〉 (A.29)

H̄ = −i}U†∂tU + U†HtotU |Ψ̄〉) (A.30)
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Filling in for U and Htot results in

H̄tot = }
ω0 − ωl

2 σz + }
(
Ω̃∗ei2ωlt + Ω∗

)
σ− + }

(
Ω̃ei2ωlt + Ω

)
σ+ (A.31)

The remaining time dependent terms in the Hamiltonian oscillate at 2ωl. If we assume
that we are close to resonance, i.e. ωl ≈ ω0, this term is assumed to average out quickly
over timescales relevant to the interaction and are therefore neglected, a procedure
known as the rotating-wave approximation. If we define the detuning of the laser field
with respect to the atomic resonance as (see Fig. A.1)

∆ω = ω0 − ωl
2 (A.32)

Then the approximated time-independent Hamiltonian becomes

H̄tot = }
(
∆ωσz + Ω∗σ− + Ωσ+) (A.33)

This Hamiltonian can be re-written in the form of a vector product of r ≡ (Re(Ω),−Im(Ω),∆)
with σ = (σx, σy, σz), where σx,y,z are the previously defined Pauli matrices, leading
to the simplified form of the Hamiltonian

H̄tot = } (r · σ) (A.34)

The general expression for the wave function in the Schrödinger picture (no time
dependence in the operator) is found by integrating the Schrödinger equation

|Ψ(t)〉 = e
−iÔ
} t|Ψ(0)〉 (A.35)

A quantum operator as the argument of the exponential is defined in terms of the
power series expansion

e
−iÔ
} t =

+∞∑
n=0

1
n!

(
i

}
Ôt

)n
(A.36)

Doing the expansion for the Hamiltonian and using the commutation relations for the
Pauli matrices, [σi, σj ]+ = 0 and σ2

i = 1, the exponential can be written as

Mint = e
−iH̄

} t = cos(rt)1 + i
r · σ
|r| sin(rt) (A.37)

where r = |r| =
√

Ω2 + ∆2
ω. The state vector |Ψ(t)〉 can now be found by applying this

operator to the initial sate vector |Ψ(0)〉 and the coefficients c1 and c2 are determined
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Figure A.2: Schematic overview of two square pulse sequence, each of duration
τ separated by a field-free period of Tfree. t = 0 and pulse delay Tdelay are

defined at the onset of the first and second pulse respectively.

by the projection on each state, i.e.

〈1|Ψ(τ)〉 = c1 = 〈1|Mint(τ)|Ψ(0)〉 (A.38a)

〈2|Ψ(τ)〉 = c2 = 〈2|Mint(τ)|Ψ(0)〉 (A.38b)

If we assume the initial conditions at t = 0 to be |Ψ(0)〉 = |1〉, i.e. all the population
starts out in the ground state, then the evolution of the excited state is given by

c2 = cos(rt)〈2|1|1〉+ i
〈2|r · σ|1〉

r
sin(rt) (A.39)

⇒ c2 = i
Ω
r

sin(rt) (A.40)

The probability to find an atom in the excited state upon a measurement is then given
by the squared value, |c2|2, which results in

|c2|2 = Ω2

r2 sin2(rt) (A.41)

We see that the probability to find an atom in the excited state oscillates with the
frequency r which is determined by the detuning of the radiation from the atomic
resonance and the Rabi frequency Ω which itself determined by the transition dipole
moment and the intensity of applied radiation.

We now want to study the probability of finding the atom in the excited state after
interaction with two square pulses (as an approximation of the excitation process) of
duration τ separated by a time interval Tfree where no field is present, see Fig. A.2.
The Hamiltonian for the field-free period is given by Eq. A.37 with Ω set to zero,
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which then reduces to

Mfree = e−i∆ωTfree |1〉〈1|+ ei∆ωTfree |2〉〈2| (A.42)

This neglects spontaneous decay and other de-phasing mechanisms such as Doppler
broadening, it however does not alter the shape of the result. If we again assume the
atoms are initially in the ground state then the excitation amplitude after two pulses
can now be described by a series of multiplications

〈2|Ψ(τ + Tfree + τ)〉 = 〈2|Mint(τ)Mfree(Tfree)Mint(τ)|1〉 (A.43)

Working out the multiplication gives the amplitude of the state vector |2〉 at time
t = τ + Tfree + τ

c2(t) = 2Ω
r

sin(rτ)
(

cos(rτ) cos (∆ωTfree)−
∆ω

r
sin(rτ) sin (∆ωTfree)

)
(A.44)

so that the probability to find the atom in the excited state upon a measurement
becomes

|c2(t)|2 = 4Ω2

r2 sin2(rτ)
(

cos(rτ) cos (∆ωTfree)−
∆ω

r
sin(rτ) sin (∆ωTfree)

)2
(A.45)

In typical Ramsey-type spectroscopy the delay time between the excitation pulses
is kept constant and the frequency of the interrogation field is scanned with respect
to the resonance. In order to conveniently describe optical Ramsey fringes where the
delay time between the two excitation pulses is varied and the frequency of the laser is
kept constant we need to make the substitution Tfree = ∆t− τ . In addition we need
incorporate the possibility of potential phase shifts between the two excitation pulses
Φ.

|c2|2 = 4Ω2

r2 sin2(rτ)
(

cos(rτ) cos
(

∆ω∆t−∆ωτ −
Φ
2

)
− ∆ω

r
sin(rτ) sin

(
∆ω∆t−∆ωτ −

Φ
2

))2
(A.46)

In the situation of excitation with a phase locked pulse pair changing the pulse
delay ∆t leads to an effective phase change according to −ωl∆t. In addition, other
potential sources of phase change (∆φ) have to be carefully considered and analyzed,
leading to Φ = −ωl∆t + ∆φ. One example of a source of phase shift is the carrier-
envelope phase shift, ∆φceo, when the pulses are derived from a frequency-comb laser.
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This phase shift is generally not equal to zero and has to be accounted for in the
analysis of the signals. In practice, to maximize the signal the laser is tuned as close
to resonance as possible, i.e. ωl ≈ ω0 and ∆ω ≈ 0, than Eq. A.46 can be reduced to

|c2|2 = 4 sin2(Ωτ) cos2(Ωτ) cos2
(
ω0∆t−∆φ

2

)
(A.47)

This can be cast into the even simpler form describing Ramsey interference fringes as
function of the pulse delay time

|c2|2 = A0

2 {1 + cos (ω0∆t−∆φ)} (A.48)

with
A0 = 4 sin2(Ωτ) cos2(Ωτ) (A.49)
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Hänsch, P. Lemonde, G. Santarelli, M. Abgrall, P. Laurent, C. Salomon, and
A. Clairon. Measurement of the Hydrogen 1S-2S Transition Frequency by Phase
Coherent Comparison with a Microwave Cesium Fountain Clock. Physical Re-
view Letters, 84(24), 5496–5499, 2000.

[40] B. de Beauvoir, C. Schwob, O. Acef, L. Jozefowski, L. Hilico, F. Nez, L. Julien,
A. Clairon, and F. Biraben. Metrology of the hydrogen and deuterium atoms:
Determination of the Rydberg constant and Lamb shifts. Eur. Phys. J. D, 12(1),
61–93, 2000.

[41] C. Schwob, L. Jozefowski, B. de Beauvoir, L. Hilico, F. Nez, L. Julien,
F. Biraben, O. Acef, J.-J. Zondy, and A. Clairon. Optical Frequency Measure-
ment of the 2S-12D Transitions in Hydrogen and Deuterium: Rydberg Constant
and Lamb Shift Determinations. Physical Review Letters, 82(25), 4960–4963,
1999.

[42] J. Arrington. An Examination of Proton Charge Radius Extractions from e-
p Scattering Data. Journal of Physical and Chemical Reference Data, 44(3),
31203, 2015.



Bibliography 115

[43] I. Sick. Precise radii of light nuclei from electron scattering. In Precision physics
of simple atoms and molecules, pages 57–75. Springer, 2008.

[44] E. Kraus, K. E. Mesick, A. White, R. Gilman, and S. Strauch. Polynomial fits
and the proton radius puzzle. Physical Review C, 90, 045206, 2014.

[45] I. T. Lorenz, U. G. Meißner, H. W. Hammer, and Y. B. Dong. Theoretical con-
straints and systematic effects in the determination of the proton form factors.
Physical Review D, 91, 014023(18), 2015.

[46] M. Herrmann, M. Haas, U. D. Jentschura, F. Kottmann, D. Leibfried,
G. Saathoff, C. Gohle, A. Ozawa, V. Batteiger, S. Knünz, N. Kolachevsky, H. A.
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Summary

Laser and microwave spectroscopy of simple atomic and molecular systems has played
a crucial role in the development of quantum theories. In 1947 this resulted in the
formulation of what is now called quantum electrodynamics (QED). QED is arguably
the best tested theory in physics and a corner stone of the Standard Model. In the last
two decades the improvement of experimental techniques, and most notably the inven-
tion of the frequency-comb laser, significantly enhanced the accuracy of spectroscopic
experiments. At the level of accuracy now achieved in spectroscopic experiments, the
comparison between theory and experiment is often limited by the uncertainty in the
theoretical calculations, or the fundamental constants that are required for them. In
the case of precision spectroscopy of atomic hydrogen, the current bottle neck is the
accuracy of the Rydberg constant and the proton charge radius. However, because the
experimental accuracy exceeds the theoretical precision, such a spectroscopic measure-
ment can be used to determine the proton radius and Rydberg constant, under the
assumption that QED is correct. This procedure led to a value for the proton-charge
radius that is in agreement with the evaluation from electron-scattering experiments.
This agreement between experiments and theory was disrupted in 2010 when results
were published from a spectroscopy experiment based on muonic hydrogen. Although
measurements on muonic hydrogen resulted in a more precise determination of the
proton-charge radius, the obtained value deviated by more than five standard de-
viations from the electronic hydrogen value. This discrepancy between experimental
results in now called the proton radius puzzle. More recent measurements of the proton
charge radius in different systems, and on several transitions, have resulted in results
that agree with either the small (muonic) value of about 0.84 fm, or the larger value of
0.88 fm that was found originally from electron scattering and hydrogen spectroscopy.

It is crucial that this conundrum is resolved because it could indicate new physics
beyond the Standard Model, much like the discovery of the Lamb shift which led to the
development of QED. To tackle this problem, novel experiments are required to gather
information and provide new input for the theoretical efforts. One suggestion for new
experiments is to make a similar comparison in singly ionized helium as in hydrogen,
to complement the experiments on hydrogen with a different nucleus. Experimentally
this is challenging because XUV radiation is required to excite the 1S-2S transition.
A different route to determine the proton-charge radius is made possible by recent
breakthroughs in calculation of molecular QED theory. This gives good prospects to
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resolve the proton charge radius from sufficiently accurate spectroscopy of molecu-
lar hydrogen, the benchmark system for molecular quantum theory and spectroscopy.
Also in this system, the required wavelength of ∼ 200 nm makes high-resolution spec-
troscopy difficult. Our group aims to make these experiments possible, and in this
thesis high-resolution spectroscopic experiments are described that demonstrate the
feasibility of these efforts.

In Chapter 2 of this thesis the concept of the frequency-comb laser is introduced
and the principle and analysis of Ramsey-comb spectroscopy is explained. Ramsey-
comb spectroscopy is based on a combination of Ramsey’s method of separated oscil-
latory fields and frequency-comb pulses. Ramsey excitation, or quantum-interference
metrology, has proven to be extremely fruitful and is now applied in many labora-
tories around the world, most notably in cesium atomic clocks and other microwave
frequency standards. In our application of Ramsey’s method, the phase evolution of
an atom is probed with two frequency-comb laser pulses that are separated by a time
delay. In the case of excitation with two phase-locked pulses, the relative phase of the
contribution to the induced ground- and excited-state superposition is determined by
the time delay between the excitation pulses and their relative phase. By adjusting
the time delay of two such pulses with sufficient resolution and accuracy, a quantum
interference signal can be probed from which the transition frequency is determined.
In Ramsey-comb spectroscopy a series of quantum-interference signals is measured
by selecting frequency-comb pulse pairs at multiples of the original repetition time.
Combining these signals, and performing the analysis on all of them simultaneously
constitutes a Ramsey-comb measurement. The maximum time delay between the
excitation pulses is limited to several times the excited state lifetime, allowing for
high-precision measurements. Moreover, the frequency-comb pulses can be amplified
to very high-pulse energies and used for efficient frequency up-conversion.

To perform Ramsey-comb measurements with deep-ultraviolet frequency-comb pul-
ses a complicated laser setup is required, which is described in Chapter 3 of this thesis.
The heart of the setup is a frequency-comb based on a mode-locked Ti:sapphire laser.
The frequency-comb pulses are used to seed an optical parametric amplifier (OPA)
where two pulses are selectively amplified. The pump pulses for this device are de-
livered by a seperate laser system that is based on a passive mode-locked oscillator
operating at 1064 nm. The repetition rate of the pump laser is synchronized with the
frequency comb because precise temporal overlap of the frequency-comb and pump
pulses is required for amplification in the OPA. To be able to amplify different pairs
of frequency-comb laser pulses, pulses with adjustable inter-pulse delay are selected
from the pump-pulse train using fast electro-optic modulators. These two pulses are
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amplified by several amplification stages up to a pulse energy of 27 mJ. They are
then frequency doubled to 532 nm through frequency up-conversion in a BBO crys-
tal, and used to pump the OPA. After the parametric amplification process, the two
amplified frequency-comb pulses have an energy of 1-2 mJ which can be used for effi-
cient up-conversion. One crucial detail of this setup is that the amplification process
influences the phase of the frequency-comb pulses, which potentially can lead to a
frequency-shift in the interpretation of a Ramsey-comb measurement. To ensure that
the phase is stable as a function of the inter-pulse delay, the relative phase of the
amplified frequency-comb pulses is measured based on spectral interferometry in a
Mach-Zehnder type interferometer.

In chapter 4 of this thesis we demonstrate Ramsey-comb spectroscopy in the deep
ultraviolet for the first time. 84Kr is excited in an atomic beam on the two-photon
4p6 → 4p55p[1/2]0 transition at 212.55 nm. The 212.55 nm radiation is generated
by frequency quadroupling the amplified frequency-comb pulses using two sequential
stages of BBO-crystals. The resulting deep-UV beam is split in equal parts by a beam-
splitter, which enables to excite the two-photon transition in a counter-propagating
laser beam configuration so that the first-order Doppler shift is reduced. The collision
point of the excitation pulses is overlapped with an atomic beam based on a pulsed
supersonic expansion of krypton atoms. After the excitation pulses, an ionization
pulse at 532 nm is applied which only ionizes krypton atoms that are in the excited
state. The resulting ions are extracted and detected using a channel-electron multiplier
(CEM). In addition, a time of flight drift tube between the laser excitation point and
the detector separates the krypton isotopes. This time-of-flight measurement enables
to resolve the signals of the different isotopes.

It is shown that the AC-Stark shift is effectively eliminated, and combined with
the counter-propagating excitation geometry to suppress Doppler effects, a transition
frequency of 2,820,833,101,679(103) kHz is found. The uncertainty of our measurement
is 34 times smaller than the best previous measurement, and mainly limited by the 27
ns lifetime of the excited state. This result demonstrates the power of the Ramsey-
comb method for transitions in the deep-UV wavelength range.

In chapter 5 we report on the determination of the EF 1Σ+
g -X1Σ+

g (0,0) Q1 transi-
tion in H2 by employing Ramsey-comb two-photon spectroscopy in the deep ultraviolet
at 201.80 nm. This is an essential ingredient for determining the dissociation energy
(D0) of molecular hydrogen and the fundamental ground tone (FGT ), which serve as
important benchmark numbers for molecular quantum physics. Advances in molecular
energy structure calculations enable testing of quantum electrodynamics and poten-
tially a determination of the proton charge radius from H2 spectroscopy.
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The 201 nm radiation is created through three sequential steps of frequency dou-
bling and sum-frequency generation in BBO crystals. The transition is then excited
in a counter propagating beam configuration to suppress the first-order Doppler shift.
After the excitation pulses, another laser pulse is applied that state-selectively ionizes
the hydrogen molecules. The ionized molecules are extracted using pulsed electrical
fields and detected with an electron multiplier. With this setup Ramsey-comb mea-
surements are performed and Ramsey fringes are observed up to a maximum delay
time of 380 ns, corresponding to a separation of 48 times the frequency-comb repetition
time.

Taking all systematic effects into account, we determined a transition frequency
of 2 971 234 992 965(73) kHz for the EF 1Σ+

g -X1Σ+
g (0,0) Q1 transition in ortho-H2.

The relative uncertainty of this result is 2.5 · 10−11, and is in agreement with the
previous measurement, but two orders of magnitude more accurate. The new two-
photon transition frequency of the Q1 line of ortho-hydrogen can be used to obtain an
improved value for the (rotation-less) dissociation energy D0 of para-hydrogen, and
the result is consistent with previous experimental determinations and theory.

The experimental results achieved with krypton and molecular hydrogen demon-
strate that the amplified frequency-comb pulses can be upconverted efficiently and used
for high-precision spectroscopy. With minor modifications the experimental setup can
be used to measure additional level energies in molecular hydrogen for more precise
determinations of the fundamental ground tone and the dissocoiation energy. This is
briefly discussed in chapter 6 (outlook), together with a new experimental setup that
is under construction to enable spectroscopy on singly-ionized helium at 32 nm, based
on a combination of high-harmonic generation and Ramsey-comb spectroscopy. This
would allow a new precise test of QED, or it could be used to determine either the
alpha-particle radius or the Rydberg constant.



Samenvatting

Laser spectroscopie aan eenvoudige atomaire en moleculaire systemen heeft een cru-
ciale rol gespeeld in de ontwikkeling van de kwantumtheorie. Dit resulteerde, in 1947,
in de totstandkoming van wat nu bekend staat als de Kwantumelektrodynamica, of
QED (van Quantum Electrodynamics). QED is wellicht de meest rigoureus getoetste
theorie in de natuurkunde, en is een essentieel onderdeel van het Standaard Model.
Gedurende de laatste twee decennia heeft de verbetering van experimentele technieken,
en vooral de ontwikkeling van de frequentiekam laser, er toe geleid dat de precisie
van spectroscopische experimenten significant is verbeterd. De meetnauwkeurigheid
die behaald kan worden in de huidige spectroscopie is zo hoog dat de vergelijking
met theorie vaak gelimiteerd is door de onzekerheid in de berekeningen, of door
de nauwkeurigheid van de fundamentele natuurconstanten die nodig zijn voor deze
berekeningen. Voor precisiespectroscopie aan atomair waterstof is het knelpunt in de
vergelijking met theorie de onzekerheid in de Rydbergconstante, en de proton radius.
Omdat de experimentele precisie de theoretische precisie overtreft, kan een dergelijke
meting ook gebruikt worden voor het bepalen van de protonstraal en Rybergconstante,
als aangenomen wordt dat QED correct is. Door middel van deze procedure is een
protonstraal bepaald die in overeenstemming is met metingen op basis van elektron
verstrooiing experimenten. Deze consensus tussen experiment en theorie werd versto-
ord in 2010 na de publicatie van spectroscopie experimenten aan muonisch waterstof.
In dit experiment is een protonstraal bepaald met een (veel) lagere meetonzekerheid,
echter, de absolute waarde week meer dan vijf standaarddeviaties af het resultaat
behaald met elektronisch waterstof. Deze discrepantie tussen experimentele resul-
taten wordt ook wel de ”protonstraal puzzel” genoemd. Recente metingen van de
protonstraal in andere systemen, en overgangen, zijn ofwel in overeenstemming met
de muonische waarde van ongeveer 0.84 fm, of met de waarde van 0.88 fm die oor-
spronkelijk met spectroscopie in gewoon waterstof en met electronverstrooïıng werd
gemeten.

Het is van wetenschappelijk belang dat dit raadsel wordt opgelost omdat het een
indicatie kan zijn van nieuwe fysica, zoals ook het geval was met de ontdekking van
de Lamb verschuiving die heeft geleid tot de ontwikkeling van QED. Om dit probleem
op te lossen zijn er nieuwe experimenten noodzakelijk, waarvan de resultaten kunnen
dienen als input voor de theoretische inspanningen. Een mogelijkheid is het maken van
een zelfde vergelijking in enkelvoudig gëıoniseerd helium; dit zou de waterstof metingen
complementeren met een andere kern. Experimenteel is dit zeer uitdagend vanwege
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de extreem-ultraviolet (XUV) straling die nodig is voor het aanslaan van de 1S-2S
overgang He+. Een ander alternatief voor het bepalen van de protonstraal is recent
mogelijk gemaakt door grote vooruitgang van quantummechanische berekeningen (in-
clusief QED) van de energieniveaus van moleculen. Die ontwikkelingen bieden perspec-
tief om de protonstraal te bepalen door middel van precisiespectroscopie aan moleculair
waterstof, het ijksysteem voor moleculaire kwantumtheorie en spectroscopie. Echter,
ook voor H2 is de vereiste golflengte van ∼ 200 nm experimenteel een beperkende
factor. Onze onderzoeksgroep heeft als doel deze experimenten te realiseren, en in
dit proefschrift worden Ramsey-comb experimenten beschreven die de haalbaarheid
hiervan aantonen.

In hoofdstuk 2 van dit proefschrift wordt het concept van de frequentiekamlaser
gëıntroduceerd, en wordt het principe en de analyse van Ramsey-comb spectroscopie
uitgelegd. Ramsey-comb spectroscopie is gebaseerd op een combinatie van Ram-
sey’s gescheiden-veld excitatie methode en frequentiekampulsen. Ramsey excitatie,
of kwantum-interferentie metrologie, is een zeer nuttige methode en wordt toegepast
in bijvoorbeeld atomaire klokken en andere microgolf frequentiestandaarden. In onze
toepassing van Ramsey’s methode wordt de fase-evolutie van een atoom door mid-
del van twee in de tijd gescheiden frequentiekampulsen gemeten. De relatieve fase
tussen de superpositie van grond- en aangeslagen-toestand gëınduceerd door de twee
laser pulsen wordt bepaald door de fase evolutie van het atoom (de overgangsfre-
quentie) en de fase-evolutie van de laserpulsen zelf. Door het tijdsverschil tussen de
pulsen te variëren, met voldoende nauwkeurigheid en resolutie, kan het resulterende
kwantuminterferentiesignaal worden gemeten, op basis waarvan de overgangsfrequentie
kan worden bepaald. In Ramsey-comb spectroscopie wordt een serie kwantuminter-
ferentiesignalen gemeten door paren van frequentiekampulsen te selecteren met een
tijdsafstand gelijk aan veelvouden van de originele repetitie tijd van de laser. Het
combineren en gelijktijdig analyseren van een dergelijke meetserie vormt een Ramsey-
comb meting. De tijdsduur tussen de pulsen kan een aantal maal de levensduur van
de aangeslagen toestand zijn, wat zeer precieze metingen mogelijk maakt. Tevens
kunnen de frequentiekampulsen worden versterkt tot een zeer hoge pulsenergie; daar-
door kunnen deze worden gebruikt voor efficiënte frequentieconversie in non-lineaire
processen.

Het uitvoeren van een Ramsey-comb meting met diep-ultraviolette frequentiekam-
pulsen vereist een gecompliceerde opstelling. In hoofdstuk 3 van dit proefschrift wordt
deze opstelling gedetailleerd beschreven. Het hart van de opstelling wordt gevormd
door een frequentiekam die gebaseerd is op een gemodelockte titaan-saffierlaser. De fre-
quentiekampulsen worden gebruikt voor het aandrijven van een optische parametrische
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versterker (OPA) waarin selectief twee pulsen worden versterkt. De ’pomp’-pulsen
voor deze versterker worden gegenereerd in een apart laser systeem dat gebaseerd is
op een passief-gemodelockte oscillator die opereert bij een golflengte van 1064 nm.
De repetitiefrequentie van pomp laser is gesynchroniseerd met de frequentiekam laser,
omdat nauwkeurige temporele overlap vereist is voor versterking in de OPA. Uit de
’pomp’-pulstrein worden twee pulsen met geselecteerd door middel van snelle elektro-
optische modulatoren, dit maakt het mogelijk verschillende frequentiekam pulsparen
te versterken. De twee geselecteerde pomp-pulsen worden versterkt in twee versterking
trappen tot een pulsenergie van 27 mJ. Daaropvolgend worden deze pulsen verdubbeld
in optische frequentie naar 532 nm, en gebruikt om de OPA te ’pompen’. Na de
parametrische versterking hebben de frequentiekampulsen dan een energie van 1-2
mJ. Een cruciaal detail van deze opstelling is dat het versterkingsproces de fase van
de frequentiekampulsen kan bëınvloeden, wat weer kan leiden tot een frequentiever-
schuiving in de interpretatie van een Ramsey-comb meting. Om zeker te zijn dat de
fase stabiel is als functie van het tijdsverschil tussen de pulsen, wordt de relatieve fase
tussen de versterkte kampulsen gemeten op basis van spectrale interferentie in een
Mach-Zehnder interferometer.

In hoofstuk 4 worden de eerste Ramsey-comb spectroscopie meting in het diep-
ultraviolette deel van het spectrum gepresenteerd. In een atoombundel van 84Kr wordt
de twee-foton overgang 4p6 → 4p55p[1/2]0 aangeslagen met 212.55 nm. De 212.55 nm
wordt gegenereerd in twee opeenvolgende frequentie-verdubbeling stappen van de ver-
sterkte kampulsen door middel van niet-lineaire wisselwerking in twee BBO kristallen.
De resulterende UV bundel wordt in twee gelijke delen gesplitst, om daarmee de twee-
foton overgang aan te slaan met tegengesteld propagerende laserbundels. Door deze
configuratie wordt de eerste-orde Doppler verschuiving sterk onderdrukt. Het inter-
sectiepunt van de excitatie pulsen wordt overlapt met een atoombundel, gebaseerd
op een supersonische expansie van krypton atomen. Na de excitatiepulsen wordt een
532 nm laserpuls gebruikt om de atomen die zich in de aangeslagen toestand bevinden
te ioniseren. De gecreëerde krypton ionen worden vervolgens geëxtraheerd en gede-
tecteerd door middel van een channel electron multiplier (CEM).

Een opmerkelijk resultaat is dat het AC-Stark (invloed van de laserintensiteit op
het atoom) effect vrijwel volledig onderdrukt wordt, en in combinatie met de onder-
drukking van het Doppler effect is een overgangsfrequentie 2 820 833 101 679(103) kHz
bepaald. De onzekerheid van deze meting is 34 maal kleiner dan de beste meting tot op
heden, en wordt vooral gelimiteerd door de levensduur van 27 ns van de aangeslagen
toestand. Dit resultaat toont de effectiviteit van de Ramsey-comb methode aan voor
overgangen in het diep-ultraviolette deel van het spectrum.
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In hoofdstuk 5 rapporteren wij de bepaling van de twee-foton EF 1Σ+
g -X1Σ+

g (0,0)
Q1 overgang in H2 door gebruik te maken van de Ramsey-comb opstelling bij 201.80 nm.
Dit is een essentieel ingrediënt door het bepalen van de dissociatie energie en de fun-
damentele grondtoon van moleculair waterstof, beide belangrijke ijkpunten in molecul-
aire kwantum fysica. Recente doorbraken in berekeningen aan de moleculaire energie
structuur maken het steeds beter mogelijk QED te toetsen, en potentieel de straal van
het proton te bepalen op basis van H2 spectroscopie.

De vereiste 201 nm straling wordt gegenereerd door drie opeenvolgende stappen
van frequentie verdubbeling en som-frequentie mixing. De overgang wordt vervolgens
aangeslagen door twee tegengesteld propagerende laserbundels, dit om de eerste-orde
Doppler verschuiving te onderdrukken. Door middel van een ionisatie puls worden
de moleculen in de aangeslagen toestand gëıoniseerd, en vervolgens met een gepulst
elektrisch velden omhoog bewogen en gedetecteerd. Met deze opstelling zijn Ramsey
oscillaties gemeten tot een maximaal tijdsverschil tussen de excitatie pulsen van 380 ns,
wat correspondeert met 48 maal de repetitie tijd van de frequentiekam.

Na evaluatie van alle systematische effecten is een overgangsfrequentie van
2 971 234 992 965(73) kHz bepaald voor de EF 1Σ+

g -X1Σ+
g (0,0) Q1 overgang in ortho-

H2. Deze waarde is in overeenstemming met eerdere resultaten, maar de relatieve
onzekerheid van 2.5 · 10−11 is een verbetering met bijna een factor honderd. Deze
verbeterde overgangsfrequentie kan gebruikt worden voor een betere bepaling van de
(rotatie-vrije) dissociatie-energie, en de gevonden waarde is consistent met de eerdere
experimentele bepaling en theorie.

De resultaten die behaald zijn met krypton en moleculair waterstof tonen aan
dat de versterkte frequentiekampulsen gebruikt kunnen worden voor efficiënte fre-
quentie op-conversie en precisiespectroscopie experimenten. Met enkele aanpassingen
aan de opstelling kunnen andere overgangen in moleculair waterstof gemeten wor-
den. Zodoende kan de dissociatie energie en de fundamentele grondtoon nog pre-
ciezer worden bepaald. Dit staat kort beschreven in hoofdstuk 6 (Outlook), tezamen
met een nieuwe experimentele opstelling die wordt opgebouwd om spectroscopie aan
enkelvoudig gëıoniseerd helium bij 32 nm mogelijk te maken. Dit is gebaseerd op een
combinatie van hoge-harmonische generatie en Ramsey-comb spectroscopie. Hiermee
zou op termijn een bijzonder nauwkeurige QED test gedaan kunnen worden, of in
plaats daarvan een bepaling van de Rydberg constante of de straal van het alpha-
deeltje.
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