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PACS. 66.30.Qa – Electromigration.
PACS. 72.10.Bg – General formulation of transport theory.

Abstract. – The starting formula of Bosvieux and Friedel (J. Phys. Chem. Solids, 23 (1962)
123) for the force on an ion in a metal due to an applied voltage is shown to lead to the same
description as the linear-response approach used in the field since its introduction by Kumar
and Sorbello (Thin Solid Films, 25 (1975) 25). By this electromigration theory has become a
unified theory. This follows after accounting for a treacherous trap term, which at first sight
seems to be zero. Up to now, Bosvieux and Friedel claimed to predict a completely screened
direct force, which means that only a wind force would be operative. In addition, the amount
of screening has been calculated up to second order in the potential of the migrating impurity,
using a finite temperature version of the screening term derived by Sham (Phys. Rev. B, 12
(1975) 3142). For a proton in a metal modeled as a jellium the screening appears to be about
15%, which is neither negligible nor reconcilable with the old full-screening point of view.

Introduction. – Electromigration is the motion of an ion in a metal under the influence
of an applied voltage. Depending on the metal and the ion, its motion is either to the anode
or to the cathode. The total driving force F on such an ion is known to be the result of two
contributions, a direct force and a wind force:

F = Fdirect + Fwind = (Zdirect + Zwind)eE = Z∗eE, (1)

in which Z∗ is called the effective valence, which is a measurable quantity. The direct force is
due to the direct action of the applied field E on the charge of the ion. The wind force comes
from the scattering of the current carrying electrons off the ion [1].

Until 1962 there was a common belief that Zdirect was equal to the bare valence Zi of the
ion. At most a small deviation from that value could arise from the electrons in the metallic
environment of the ion. In 1962 Bosvieux and Friedel [2] predicted a complete cancellation of
the direct force due to screening effects, so that only the wind force would remain. By that
prediction a controversy was born. It was not easy to decide matters by a measurement, and
a satisfactory theoretical answer was lacking as well.

In 1975 Kumar and Sorbello [3] published an exact linear-response expression for the
driving force. After that it was considered as being just a matter of a careful evaluation of
that expression in order to settle the problem. It took quite some time to do so though. Finally
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Sorbello [4], starting from the complicated treatment given by Rimbey et al. [5], predicted a
screening of 10–30%, depending on the potential used for the ion. Support of this result has
been given by the present author, starting from a much simpler description [6]. However, in
the meantime new support was given for the full-screening point of view [7].

Interestingly, the original paper by Bosvieux and Friedel (BF) is referred to as being
controversial on the one hand, while on the other hand their starting formula is referred to
as the first quantum-mechanical equation for the wind force, which is seen as a pioneering
contribution to the field. Therefore we undertook an new evaluation of their starting formula,
following the authors as closely as possible, up to a point where we came across a trap.
By treating this trap properly the final evaluation ends up at the standard linear-response
expression for the driving force. As far as the author knows, Sorbello was the first who showed
that such traps occur in the theory of electromigration [8].

The screening itself has been calculated by Sorbello [4], who used one type of expression
for it. Therefore we undertook the evaluation of Sham’s second-order expression written in a
new form, the more so as a more recent result for the screening, ranging from 0 to 100%, is
rather inconclusive [9]. Sham’s expression has never been evaluated numerically, and in his
paper he just gives an order of magnitude comparison with his wind force expression [10].
This has led him to the conclusion that the screening is negligible. We find a screening of
5–25%, which is in agreement with Sorbello’s results.

Rydberg atomic units are used, in which the energy is in rydberg, the distance is in bohr
(1 bohr ≈ 0.5 Å), h̄ = 1, and the electronic mass is 1

2 .

Basics of linear-response theory. – We first give the standard linear-response expression
for the driving force on an ion at position Ri [11],

F = ZieE − ieEν

∫ ∞

0

dte−atTr
{
ρ(H)

[
Fop(t),

∑
j

rν
j

]}
, (2)

in which the Cartesian label ν runs from 1 to 3. The infinitesimally positive number a
represents the adiabatical switch-on of the electric field, the operator ρ(H) is the grand-
canonical density depending on the system Hamiltonian H, the force operator Fop stands for

Fop ≡ −∇Ri
V = −

∑
j

∇Ri
v(rj − Ri) ≡

∑
j

f i
j , (3)

and its time dependence refers to the Heisenberg representation Fop(t) ≡ eiHtFope
−iHt. The

expression published by Kumar and Sorbello [3] follows simply after a partial integration in
eq. (2) with respect to the time.

All important studies of the driving force have been done for the electron-impurity system,
the Hamiltonian H of which can be written as a sum of single-particle Hamiltonians h, so
H =

∑
j hj with h = h0+v = h0+

∑
α vα. The summation in the electron-impurity potential

v runs over the positions Rα of the impurities. This allows for a reduction of the many-body
expression (2) to the following single-particle expression:

F = ZieE − ieEν

∫ ∞

0

dt e−at tr
{
n(h)[f i(t), rν ]

}
, (4)

where n(h) is the Fermi-Dirac distribution function in operator form

n(h) =
1

eβ(h−εF) + 1
. (5)
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The treatment of Bosvieux and Friedel (BF). – We start to follow BF’s treatment, by
writing down their system Hamiltonian

H = −
N∑

µ=1

∆µ

2mµ
+ V (r1, . . . rµ, . . . rN ). (6)

In applying a small perturbation denoted as δV they write down the perturbed wave function
Ψ. In their appendix BF employ the idea of switching on the field adiabatically. For the sake
of clarity we give the explicit form of the perturbing potential due to an applied field,

δV (t) = eEeat ·
( ∑

j

rj −
∑
α

ZαRα

)
≡ δV eat ≡ (

δV (r) + δV (R)
)
eat, (7)

which is zero in the limit t → −∞. The position-dependent potentials have been defined for
later use. BF’s force expression reads as

�φ = −〈Ψ|∇i(V + δV )|Ψ〉, (8)

in which |Ψ〉 represents the state of the system as it develops from its unperturbed ground
state |ψ0〉 due to the perturbation δV . In order to find |Ψ〉 we solve the time-dependent
Schrödinger equation

i
∂Ψ(t)
∂t

= H(t)Ψ(t) (9)

for the total Hamiltonian H(t) = H + δV (t) by working in the interaction representation for
Ψ(t), defined as ΨI(t) ≡ eiHtΨ(t). Using eq. (9), one finds straightforwardly that the time
derivative of ΨI(t) is equal to −ieiHtδV (t)e−iHtΨI(t). Integration of this equation leads to
the following expression for Ψ(t) linearly in δV :

Ψ(t) = −ie−iHt

∫ t

−∞
dt′eiHt′δV (t′)e−iHt′ΨI(−∞) + e−iHtΨI(−∞). (10)

With δV (t) = δV eat, applying the substitution t − t′ ≡ s, and considering an arbitrary time
in the present, so t = 0, this becomes

Ψ(0) ≡ Ψ = −i

∫ ∞

0

dte−(iH+a)tδV eiHtΨI(−∞) + ΨI(−∞). (11)

If one calculates matrix elements with this |Ψ〉 the factor e−iE0∞ in the state |ΨI(−∞)〉
drops out so that just the ground state |ψ0〉 remains. BF’s eq. (I.2) for |Ψ〉 is reproduced by
inserting the complete set of eigenstates of the system Hamiltonian H, denoted by |ψn〉. The
only difference is the presence of the infinitesimal number a. BF have put a = 0 and just
restrict the summation over n to all values n �= 0. It will become clear that this difference has
a dramatic influence on the final results.

Now we evaluate BF’s force expression, eq. (8), linearly in the applied field δV :

�φ = −〈ψ0|∇i(δV )|ψ0〉+ i

∫ ∞

0

dt e−at〈ψ0|(∇iV )e−iHtδV eiHt|ψ0〉+ c.c.

= ZieE + i

∫ ∞

0

dt e−at〈ψ0|
[
(∇iV ), e−iHtδV eiHt

]
|ψ0〉, (12)

in which we used eq. (7) for evaluating the matrix element 〈ψ0|∇i(δV )|ψ0〉.
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In the further evaluation of this equation we want to follow BF’s evaluation given in their
§I. The integral in the first line of eq. (12) is carried out after inserting the complete set |ψn〉.
Using the equality (∇iV ) = [∇i,H] one obtains

�φ = ZieE −
∑

n

(En − E0)〈ψ0|∇i|ψn〉 〈ψn|δV |ψ0〉
E0 − En + ia

+ c.c.

= ZieE + 〈ψ0|∇iδV |ψ0〉 − ia
∑

n

〈ψ0|∇i|ψn〉 〈ψn|δV |ψ0〉
E0 − En + ia

+ c.c.

= −ia
∑

n

〈ψ0|∇i|ψn〉 〈ψn|δV |ψ0〉
E0 − En + ia

+ c.c. (13)

The second line is obtained after the replacement En−E0 → En−E0−ia+ia and carrying out
the sum over n for the first term. We want to comment on eq. (13) in view of the results of BF.
First, in evaluating the matrix element 〈ψ0|[∇i,H]|ψn〉 in the first line of eq. (13), BF create
in addition surface integral terms corresponding to Green’s theorem, by that not appreciating
the Hermitian property of H. These surface integral terms represent flow of probability out
of the system, which is obviously zero for a finite system and for an isolated metal, as BF
admit. But this flow is zero also for a metal carrying a steady electric current, which is denied
in practice by BF. Secondly, in their treatment the last line of eq. (13) is missing, because
BF have a = 0. We want to point out that regarding this last line a treacherous trap in the
formalism is involved, which has shown up earlier in electromigration theory [8]. This term
seems to be zero because of the proportionality with the infinitesimal number a, but we will
show that this term in fact is a rich one.

In rewriting the last line of eq. (13) we write the energy denominator as a time integral,
after which the summation over n can be carried out. One finds

�φ = −a

∫ ∞

0

dt e−at〈ψ0|
[
∇i, e

−iHt
(
δV (r) + δV (R)

)
eiHt

]
|ψ0〉, (14)

in which δV has been replaced by the two position-dependent terms according to eq. (7).
Because H commutes with δV (R), the second term reduces to ZieE, and one finds that

�φ = ZieE − a

∫ ∞

0

dt e−at〈ψ0|
[
eiHt∇ie

−iHt, δV (r)
]
|ψ0〉. (15)

After a partial integration with respect to time, using that [∇i,H] = (∇iV ), and substituting
δV (r) according to eq. (7), one finds

�φ = ZieE + i

∫ ∞

0

dt e−at〈ψ0|
[
eiHt(∇iV )e−iHt, eE ·

∑
j

rj

]
|ψ0〉. (16)

We are back at the second line of eq. (12), but only the electron coordinates in δV have
survived the operations. The influence of the electric current on the total force is taken care
of by the second term in the right-hand side of eq. (16). In retrospection this result follows
rightaway from eq. (12) as well, but we wanted to go along with BF’s way of evaluation first.

Equation (16) is a very interesting result. It is precisely the zero-temperature equivalent
of eq. (2). This becomes even clearer if we write down the form which shows up after the
reduction of eq. (16) to single-particle states denoted by |q〉,

�φ = ZieE + i

∫ ∞

0

dt e−at
∑

q

〈q|
[
eiht(∇iv)e−iht, eE · r

]
|q〉. (17)
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At T = 0 the sum over the single-particle states has a sharp cut-off at εq = εF. The finite-
temperature equivalent of eq. (17) can be written as

�φ = ZieE + i

∫ ∞

0

dt e−at
∑

q

n(εq)〈q|
[
eiht(∇iv)e−iht, eE · r

]
|q〉

= ZieE − i

∫ ∞

0

dt e−attr
{
n(h)

[
f i(t), eE · r

]}
≡ (Zi + Zwind + Zscr)eE, (18)

in which the Fermi-Dirac distribution n(ε) has been inserted, see eq. (5). The force operator
f i is defined in eq. (3). Clearly, eq. (18) is completely equivalent to eq. (4) of the present
text. By this electromigration theory can be considered as being unified. Apparently, BF’s
starting formula was correct, but these authors did not recognize its precise contents. This
became even clearer recently [12]. BF used eq. (8) for their result regarding the direct force
only. They treated the wind force separately, applying a semi-classical standard approach in
describing the current-carrying electrons and accounting for the scattering of the electrons by
the migrating impurity quantum-mechanically [13].

The formal eqs. (2) or (18), or forms which have been shown to be equivalent to them,
have been used since Kumar and Sorbello published their linear-response approach to the
electromigration problem [3]. The result of all this research is that the second term of these
equations contains two contributions, as has been indicated explicitly in the right-hand side
of eq. (18). One can be identified as the wind force. The other one implies some screening of
the bare direct force ZieE. The wind force expression has been studied thoroughly [14, 15].
Because the present paper is devoted to the settlement of the controversy regarding the direct
force, we want to add a calculation of Zscr starting from Sham’s contribution [10]. But first
one more comment on eq. (18) and its interpretation. BF claim to have proven that for an
isolated system the force on an ion is zero [12]. The present author agrees that this force
is zero, but this fact does not follow from an explicit proof, but from the knowledge that
internally any applied field E is screened out by an electronic surface charge that is built up.
This is a general result from the theory of electromagnetism. That is why then �φ, which is
proportional to E, is zero, because E = 0.

Calculation of Zscr. – If one evaluates eq. (18) to lowest order in the potential v of the
ion, for a jellium model of the metal, one finds that [16]

Zscr = − 4
3m

∑
kk′

(k2 − k · k′)
|vkk′ |2

(εk − εk′)2 + a2

(
∂nk

∂εk
− nk − nk′

εk − εk′

)
, (19)

in which a k label refers to a plane wave. It has been shown that the T → 0 limit is equivalent
to Sham’s expression [16]. Sham gave an order of magnitude estimate by comparing it with
the wind force expression. Zwind is proportional to the transport relaxation time τ of the
system, while Zscr is proportional to the inverse of an energy, for which the Fermi energy can
be chosen. By that he came out at a ratio of (εFτ)−1 ≈ 0.01, being negligible.

A numerical evaluation of Zscr becomes possible if one employs the spherical wave expan-
sion for a plane wave, converts the summations over the wave vectors to integrals and carries
out the angular integrals over the directions of the wave vectors. After using the relation
between k2 and the energy εk one ends up at

Zscr = − 4
3π2m

∫ ∞

0

dεk

∫ ∞

0

dεk′

∂nk

∂εk
− nk−nk′

εk−εk′

(εk − εk′)2 + a2

∑
�

f�(k, k′), (20)
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Fig. 1 – The amount of screening represented by Zscr according to eq. (20), with a = τ−1 and τ = 100,
for the screened Coulomb potential and for two square-well potentials.

in which the function f�(k, k′) is defined as

f�(k, k′) = εk
√

εk′v�(k′, k)
[
(2�+ 1)kv�(k′, k)− 2(�+ 1)k′v�+1(k′, k)

]
, (21)

containing the information about the ion potential through

v�(k′, k) =
∫ ∞

0

r2dr j�(k′r)v(r)j�(kr). (22)

The integrand has to be treated with care when εk′ = εk, because then the denominator
attains the value a2 which would imply “singular” behaviour. However, precisely then the
numerator becomes zero, because limεk′→εk

(nk − nk′)/(εk − εk′) → ∂nk

∂εk
. The crucial part of

the integrand lies in the square around the point (εk, εk′) = (εF, εF). In studying the Zscr

integral it appears that in that square one has to keep the Fermi-Dirac distribution function
in its finite-temperature form. A calculation for a � τ−1 has been presented elsewhere [17].
Here we want to follow Sham more closely. He replaced a by τ−1, by that accounting for all
possible dissipation mechanisms.

The result of a numerical evaluation for different ion potentials is shown in fig. 1. In
addition to a screened Coulomb potential v(r) = −Zie

2e−λr/r [13], with the Thomas-Fermi
screening parameter λ, square-well potentials were employed in the same spirit as Sorbello
did [4]. The choice Zi = 1 represents a proton in a jellium. The width of the square-
well potential was chosen to be equal to the screening length 1/λ and twice as large. The
corresponding well depth was limited by the condition that just no bound state could be
formed. The value of λ is determined by the Fermi energy. While Sorbello chose five values
for the Fermi energy, typical for metals ranging from sodium to aluminum, we have done the
calculation for a whole range of Fermi energies. The results are plotted as a function of the
Fermi wave number kF. The kF values of sodium and aluminum are indicated.

Because λ increases monotonically with the Fermi energy, the range of the corresponding
screened Coulomb potential decreases with increasing kF, whose reduction in strength is seen
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clearly in the bold solid curve. We compared vkk for the three potentials and found a clear
decrease for the Coulomb potential with increasing kF, and a rather flat behaviour for the
square-well potentials, the one with 2/λ being markedly stronger than the one with the smaller
width. The screening to second order in the impurity potential appears to be not negligible,
but on the average equal to 15 ± 10%. As a guide for the eye we gave the average of Zscr

for the three potentials as a dotted line. Interestingly, this result does not imply that Sham’s
conclusion of a negligible screening is entirely wrong. If fact, he compared Zscr with Zwind.
The ratio Zscr/Zwind is small indeed, but this comes from the large value of τ . It may be
clear that a comparison with Zi would have been more appropriate.

In conclusion, we have shown that the starting formula of Bosvieux and Friedel gives the
right driving force on an ion in a metal under the influence of an applied voltage. Because it
always has been recognized as the first time that a quantum-mechanical formula for that force
was written down, their contribution can still be characterized as a pioneering one. On the
other hand, their prediction of a complete cancellation of the direct force has been falsified,
because it was based on surface integral terms, which are zero due to the hermiticity of the
system Hamiltonian. Further, the expression for the magnitude of the screening due to Sham
does not give a negligible screening, but a screening of about 15%. This is in agreement with
an earlier result based on another approach [4].

Taking all this together, the controversy regarding the direct force can be regarded as
being resolved by now, and a unification of the various descriptions has been achieved.

∗ ∗ ∗

Lively and instructive discussions with J. Friedel and an extended recent correspondence
are greatly appreciated.
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