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Abstract. The last remaining claim of a complete cancellation of the direct force in electro-
migration is invalidated. In addition new numerical results are given for the magnitude of the
direct force on hydrogen in a metallic embedment, showing a screening of at most 40%. The
hydrogen potential used is obtained by an ab initio method.

Introduction

The driving force F on hydrogen in a metal due to an applied electric field is composed of two
contributions, a direct force Fyq due to the charge of the proton and a wind force F,, due to
transfer of momentum of the current carrying electrons to the proton:

F = Fd + Fw = (Zd + Zw) cE = Z7cE. (1)

The forces are proportional to corresponding valences and the applied electric field E. The
effective valence Z* is the measurable quantity [1]. A basic task of the theory of electromigration
is to provide with a microscopically correct expression for the driving force. The wind force
is a quantity that has been calculated reliably for many systems with ab initio methods for
the electronic structure [2]. This has been done not only for migration of interstitials such as
hydrogen, but also for substitutional impurities, including self-clectromigration [3, 4, 5]. The
direct force has been the subject of a long-standing controversy, initiated by the Z4 = 0 result
of Bosvieux and Friedel [6], which was given support later by Turban et al. [7]. Since about
1985 a consensus has been reached. On the ground of numerical calculations of Z4, in which
the hydrogen potential was modeled by a square well, the screening of the direct force was
considered to be 25% or less [8]. In spite of that, Friedel and Nozieres kept defending their
result that only a wind force was operative.

However, recently it has been shown that, although the starting formula of Bosvieux and
Friedel was correct, their elaboration failed, and their conclusion of a complete cancellation of
the direct force was incorrect [9, 10]. In fact, a correct elaboration of their starting formula led
to an expression for the driving force which was equivalent to all linear response expressions
used after their introduction by Kumar and Sorbello [11]. By this one of the two Z4 = 0 claims
has been invalidated.

Turban et al. use a linear response approach which can be analyzed relatively easily [7].
It will be made clear that these authors have not been aware of a treacherous trap which shows
up sometimes at some points of the theory of electromigration [9, 12]. We will show that their
conclusion of a complete cancellation of the direct force was incorrect as well.

In addition, new results will be presented for the amount of screening of the direct force
on hydrogen, using phase shifts of ab initio constructed potentials in different metallic host
systems.
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But we start by giving the main ingedients of the linear-response description of the driving
force in electromigration.

Linear-response description

The quantum statistical expectation value for the force on an impurity with chemical valency
Z; at a position R, due to an applied electric field is given by [1, 10]

F = ZieE — Tr{p(t) Vg, Vei } = £ + Figt?l, (2)

in which p(t) is the time dependent density operator and the force operator contains the electron-
impurity potential Vi; = 3°; , v(r; — Rqa) = 225 4 v§. The first term is clearly the direct force on
the bare ion. It appears that the second term, which is of course supposed to lead to the wind
force, also contains some screening contribution to the direct force. The controversy has not to
do with the fact that there is a screening contribution in F!*a! but it is as to the magnitude
of that screening contribution that people don’t agree with each other.

Using the linear response expression for p(t) one finds for Ftota!

Flotal — _jeF, /Ooo dte_“tTr{p(H) [FC’p(t), Z T;I:| }, (3)

in which the cartesian label v runs from 1 to 3. The infinitisimally positive number a represents
the adiabatical switch-on of the electric field, the operator p(H) is the grandcanonical density
depending on the system Hamiltonian H, the force operator F°P stands for

F® = Vg, Vi =3 Vr,(r; — R) = > £}, (4)
j J

and its time dependence refers to the Heisenberg representation
FoP(t) = e'HiFope 1, (5)
The driving force (2) can be decomposed as follows:
F = Z;eE + F©°% = ZeE + F + FBF = (Z, + Z°7 + Z,,)eE = (Z4 + Z,)eE, (6)

containing the result of Bosvieux and Friedel for the wind force FBF and a screening contribution
[6]. In all treatments available FBF can be written in its general form

FBF — — /5n(r)VR11)1d37", with  v' = v(r — Ry). (7

The precise explicit form depends on the level of approximation used to represent dn(r), which
is the local deviation of the electron density from its unperturbed host value due to the applied
field and the presence of the impurity. From now on we will concentrate on Zj.

The force expression (3) can be simplified using the fact, that previous relevant descriptions
have been given for the electron-impurity system, the Hamiltonian A of which can be be written
as a sum of single particle Hamiltonians h, so

H=>Y h with h=hy+v="hy+ > v% (8)
7 a

This allows for a reduction of the many body expression (3) to the following single particle
expression,

Fievl — _jeF /Ooo dt e™® tr{[x,n(h)]fl(t)}, (9)
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where n(h) is the Fermi-Dirac distribution function in operator form

1

n(h) = eBh—er) 4 1°

(10)
In Eq. (9) we adopted the choice of Turban et al. for the z direction, which is allowed because
the system is rotationally invariant or, equivalently, isotropic if the position of the impurity is
taken as the origin of coordinates.

It has been shown explicitly that if in the right hand side of Eq. (9) the statistical operator
is replaced by this operator for the free particle system, so n(h) — n(hg), the Bosvieux-Friedel
wind force expression FBF arises [13]. That means that the screening part is given by

F3" = —ieF /Ooo dt e” o tr{[x,n(h) — n(ho)}fl(t)} = Z""ek. (11)

A further reduction can be achieved by restricting the evaluation to a system with one impurity
in a jellium, which is in accordance with carlier work by others [7, 8]. In that case f! = i[p®, h] =
i[p®, ho + v']. By writing Eq. (11) in terms of eigenstates of h — hg + v', labeled by g and ¢/,
one finds [10]

€q =€q/

25 = T4 Loy = —Z; + i Z < q|[xz,n(h) — n(ho)]lq’ > Pyg = —Zi+ Za. (12)

qq’

In view of Eq. (6) this would imply a correction term Z,, to the cancellation of the bare direct
valency Z;, by which, effectively, Zcorr = Zg.

Summary of the treatment by Turban et al. [7]
Turban et al. concentrate on the equality

Z'e= () oy (13)

which can be derived using the principles of the thermodynamics of irreversible processes. The
effective valence Z* is directly related to the total flux J of electric charge, ionic as well as
clectronic, associated with a unit flux of the impurity, in the absence of an applied electric field.
They first calculate the total electron flux J. induced by an impurity with charge Z;e moving
with a constant velocity u in the z direction. According to their Eq. (16) they find that

Je Vm — VUn op
in which v,,, =< m|p(H)|m > is the occupation number of the level E,, corresponding to the
eigenvector [m > of the Hamiltonian of the electron system with the impurity at some position,
and X = 7, z; is the position operator for the electron system. Because of the equality

%) Fop
) dt < m|F°P(—t et e 15
A L 5)
Eq. (14) can be rewritten as
Je [
(Do = =i [ dt ™ 3 (v =) < mIFP(=Dln > X
0 mn

- /Ooodt e~ Tr { p(H)[F°P(—t), X]}. (16)
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Note that this latter form differs from F'%t!/eF according to Eq. (3) only by the sign of the
time dependence of the force operator. After that Turban et al. argue that J., representing the
total electron current, can be decomposed as

Je = Zzu —+ J;N = (Zz - Zw)u, (17)

in which J} represents the friction current due to the scattering of the free carriers by the
moving impurity, being equal to —Z,u in the notation of the present paper. It may be worth
while to mention that, for a simple metal, Z, < 0, because the electric current flows in a
direction opposite to the electric field direction and the current determines the direction of the
wind force. Subsequently, the authors evaluate Eq. (3) using their own notation, and they find
that 5 5
total m n
Fy _GE;EM—E,LJria
If one looks away from the difference in sign of the infinitesimal term ¢a in the denominator,
the second equality can be read rightaway from Eq. (14). Substitution into Eq. (6) leads to

F=eB(z— (), ). (19)

In view of their conjectured Eq. (17) Turban et al. end up with a total force

F® X, = —eE(%)EZO. (18)

F= —eE(%)E:O, (20)

which is just the wind force. The authors conclude that by this result they have clarified and
demonstrated Eq. (13) and further that the direct electrostatic force on the impurity vanishes.

Analysis of the treatment by Turban et al.

Although the derivations reproduced above are correct, there is one weak point in the analysis,
namely Eq. (17). By now there is an overwhelming evidence that that equation is incomplete
[8, 10, 14]. Instead of conjecturing Eq. (17), Sham evaluated Ft°ta! by that effectively evaluating
J. explicitly, see Eq. (18) [14]. To lowest order in the impurity potential he finds Eq. (6) with
a vanishing Z%°, so that according to that work Z4 =~ Z;. From a description to all orders
in the impurity potential, Sorbello found that —Z%¢"/Z; < 0.25 [8]. A recent, rather thorough
calculation leads to Eq. (12) [10]. Eq. (17) is equivalent to the equality Z°* = —Z;, which
would imply a complete screening of the direct force. One way or the other Eq. (17) gives a
picture of the actual physical process which is too simple.

Before discussing the physical situation it may be interesting to point at a specific feature
of the contributions after Sham’s work. While Sham finds just one term for Z%¢, which to
lowest order in the impurity potential is small compared to Z;, both Sorbello and the present
author find two terms of about the same magnitude which have to be subtracted. Sorbello
wrote

5" = —Z; + Zg, (21)
which is equivalent to Eq. (12). Initially, the present author found the Turban et al. result
Z5" = —Z,; [13]. It is only recently that a treacherous hidden trap was discovered and a second

term was found, which was called a correction term Z .., see Eq. (12).

Because of this surprising result, and because of the fact that the different elaborations for
Fttal are spread over the literature, we will give the main steps for the evaluation of J,/u, see
Eq. (16). To that end we first write down the corresponding single particle expression,

(£>E:0 ==t /Ooo dt e™* tr{[z, n(h) — n(ho) + n(ho)]fl(—t)}. (22)

u
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Note that this expression differs from F!°*?!/eF in Eq. (9) merely in the sign of the time
dependence of the force operator. This is another reason for giving the explicit evaluation,
because from these expressions equality (18) is not completely obvious, although it will turn
out to be correct. If one follows Sham’s approach, he obtained two lowest order terms in the
impurity potential, which are v? terms. Because the force operator is proportional to v, one of
the v? terms comes from the time dependence of the force operator, to be combined with the
n(ho) operator in Eq. (22). The other one comes from the operator difference n(h) — n(hg),
while then in the time dependence operators h can be replaced by hg. Using the expansion

B
n(h) = n(ho) — n(ho)/ ds v(s)(1 —n(hg)) + higher order in v, (23)
0
one finds straightforwardly, that
—i /oo dt e tr{[m,n(h,) — n(h,o)]fl(—t)} =
Jo

2 —_ ’
— _il_ Zk;t(kz . k;) |Ukk I <8nk _ Nk Nk ) _ _Zscr(2). (24)
m

Kk (ex — ex)? +a? \ Oey € — €x

This is precisely the opposite of Z°¢" in Eq. (17) of Ref. [10]. The superscript (2) indicates that
it is the expression to lowest (= second) order in the impurity potential. Using the expansion

) t )
etht = (1 + z/ dsv(s) + -- ) ethot, (25)
0

one finds for the other term in Eq. (22)

—1i /0oo dt e” tr{[az,n(ho)]fl(—t)} =

2T on -
— 3 kg (ke — K)ok |20 (ex — ) = =22, (26)
moi Oey,

in which the artificial demping parameter « in front has been replaced by the inverse of the
system transport relaxation time 7, in accordance with Sham’s paper and a remark of the same
tenor in the paper of Turban et al. This is precisely the opposite of the lowest order evaluation
of the wind valence expression, Eq. (7), rewritten as

1 15]
23" =% / d'r Sn(r)f' = = % kzsgf / &l (0) 1, (27)

in which 4 is the exact wave function of the electron as it is perturbed locally by the presence
of the impurity. Substituting Eqgs. (24) and (26) in Eq. (22) we find for the lowest order result

(£)® — =@ _ g0, (28)
u / E=0

Before we give the evaluation of the left hand side of Eq. (24) to all orders in the impurity
potential, we comment on this lowest order result. First of all, Sham gave an order of magnitude
estimate of 25 /Z(2) =~ 1/(FEp7), which is negligible. Recently Z%"® has been calculated
numerically, and the conclusion was that the screening was at most 25% [10]. Secondly, the
result (24) has been used as a strong argument against a complete screening, represented by
75 = —Z;. For, Z°() being the lowest order result and being quadratic in the potential, is
quadratic in Z;. This means that there is no room theoretically for a Z5°, which is linear in Z;.
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Now we give the evaluation to all orders, and this will reveal a treacherous trap. As above
we use the equality f! = i[p®, h] and the eigenstates of h — hy + v!, labeled by ¢ and ¢’. By
this one can carry out the time integral and finds

—i /0°° dt e~ tr{[a,n(h) — n(ho)] f*(~1)}

€, — €4
=1 B — n(h)ld 7 % <
i < allzn(h)  n(holly >~y
qq9
=i < qlle,n(h) —nh)ld > (1 - —% e
D~ A cq — g +ia ) P9
qq
€q=€yr
= Zz —1 Z < ql[l‘, TL(h) — n(ho)]lq’ > p;’q = Zz . Zd — _gser (29)
aq’
_Zd
L] [ ]
[ ]
[ ] _Zw
[ ]
° +Z, . i "
® L 2 L
[ ] [ J
o
[ ]
[ ]
[ ]
[ ] [ ]

Figure 1: The impurity with charge Z;e moves to the right with a velocity v and is surrounded
by electrons, depicted as solid circles. This motion induces an electron flux due to friction
proportional to -Z,, to the right and a backflow proportional to -Z4, while the impurity carries
with it the screening charge Z;e. The full electron flux J. is represented by Eq. (30).

In the result for Z5" quoted in Eq. (12) the second term was still denoted as Z,., as it emerged
as a correction term to the full screening result Z;. But here we denote it as Z4, because it
stands for the direct valence indeed. Note, that Zy3 in Eq. (29) is the result of a scemingly
artificial rewriting of the energy ratio in the second line as a sum of two terms. Naively one
would expect the term proportional to the infinitisemal parameter a to be zero, but Sorbello has
shown that it has a finite value if one just keeps the ¢, = €, terms [12]. Further, interestingly,
both in the description by Sorbello and in the present most simplified description Z5 consists
of two terms which are of the same order of magnitude.

Because the wind force has never been a subject of dispute, we refer to the literature for
the proof, that the left hand side of Eq. (26), evaluated to all orders in the impurity potential,
leads to -ZBF as it is given in the right hand side of Eq. (27) [13]. We denote this exact result
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as -Zy. Combining this result and Eq. (29) with Eq. (22) we find that
Je
(Dm0 = —2°" = Zu = Zi = Za = Zu. (30)

Taking everything together we end up at a picture shown schematically in Fig. 1. An impurity
moving to the right induces a friction term proportional to Z,, and a backflow term proportional
to Zg. It can be concluded that the conjectured Eq. (17) is incomplete in that a backflow term
proportional to Z4 is not represented in it. There is no cancellation of the direct force. On top
of that, Eq. (13) is by now even more clarified, in that also an ionic charge flow is represented
in it explicitly, which is proportional to Z4.

Numerical results for 7,

Recently Zy as given in the Egs. (12) or (29) has been calculated numerically [10]. It was
shown that this Z3 expression could be claborated such that only the scattering phase shifts
of the impurity were required for its numerical evaluation. Till now only model square well
potentials were used in the spirit of Sorbello’s calculation [8]. A metal is represented by its
Fermi energy, and the corresponding square wells were chosen such, that their width was either
1/X or 2/X, where X is the Thomas-Fermi screening parameter. In the present text we will
make a first step towards using real-metal ionic phase shifts. For the metals which Sorbello
represented merely by their Fermi energies, we constructed muffin-tin potentials for the metal
atoms, both as they reproduce their Fermi surfaces and as they are perturbed by the presence
of the impurity, which in the present work is the hydrogen atom. For the way it is done starting
from ab initio calculated atomic potentials, which is rather standard, we refer the interested
reader to work by van Ek and the present author [15]. A full account of the real metallic
embedment of the hydrogen will be subject of future work, but a possible approach to achieve
that has alrcady been mentioned carlier [16].

v Constructed potentials, shift
09— Na O Constructed potentials, no shift |
: —— Square well with width 1/A

L —— Square well with width 2/A 4

06— V —

Figure 2: Z4 for hydrogen in the metals Na, Pd, Al, Cu and Nb, using ab initio constructed
potentials and shifted ones, such that Zr = 1.
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Here we just give the results, without reproducing the published formalism [10]. The Z4
values obtained by using the phase shifts for the constructed potentials are shown in Fig. 2.
The circles correspond to the hydrogen potentials as they come out of the construction. That
is the way they are used in earlier work [15]. The reason was, that these potentials represent
the hydrogen as it is embedded by the metallic host atoms as completely as possible. The
tail of the atomic hydrogen potential is incorporated in the potentials of the first and second
shell of embedding host atoms, by which these atoms have phase shifts differing slightly from
the unperturbed-host atom phase shifts. But here the hydrogen potential is used with just a
constant potential around it, being the so-called muffin-tin zero. Therefore we also applied a
shifting procedure. The potentials were shifted by a constant in order to give a Friedel sum
Zr = 1. Results for these shifted potentials are given by the triangles. As a reference we
show in addition the results for the two model square well potentials mentioned above, with
well width ry equal to 1/X and 2/, which have formed part of the results in Ref. [10]. It is
seen that the results corresponding to the original and shifted potentials do not differ much,
apart from the case of sodium. Further, the model square well potential with ro = 1/ leads
to Z4 values which are just slightly larger than those for the constructed potentials. However,
while the square well values are monotonic with kr, because A decreases monotonically with
kg, such a systematic monotonic behaviour is not present for the metals indicated. This must
be a reflection of the difference in metallic environment of the hydrogen, although the effect is
not strong. So far we conclude that the picture arising from the use of ab initio constructed
potentials does not really differ from the picture which came out of the use of model potentials.
The calculated Z4 values lie much closer to unity than to zero, and only the latter value would
imply a complete screening of the direct force.

1.4 T T T T T T T T

v Constructed potentials, after a shift

0O Square wellr = 1/A

+ Square well ry = 2/A

% approx. Coulomb phase shifts
—— approx. square well phase shifts r; = 1/A

- approx. square well phase shifts r) = 2 T

1 + 4 .
U ; ;
L. -
s i
08 -7 % -
Nb Y
L Al _
O Na Pd % Cu
06 v _
1 I 1 [ 1 I 1 I
0.5 0.6 0.7 0.8 0.9

Figure 3: Z4 for hydrogen in the five metals indicated, using potentials derived in various ways
from the ab initio constructed potentials after a shift, such that Zr = 1.

In order to make the present study complete we do additional calculations for potentials
derived from the ab initio constructed potentials in various ways. Results are shown in Fig. 3.
First of all we fitted these potentials to a screened Coulomb potential, by that obtaining the
corresponding values for the screening parameter A. Using the above indicated model-square-
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well potential procedure the Z4 values represented by a square and a plus sign are obtained. We
only show the results corresponding to the shifted potential. The original values, shown in Fig.
2, are here reproduced, again as triangles. Further we use appoximate phase shifts obtained as
follows. We start from the exact equality for the scattering ¢ matrix t,

oo 1 5
ty = / r2drjo(kr)v(r)Re(r) = % sin §ee™*, (31)
0

in which R,(r) is the exact solution of the Schrédinger equation for the spherical potential v(r)
at the energy ¥ = k? and &, are the scattering phase shifts. In the Born approximation R(r)
is replaced by the spherical Bessel function j,(kr) and we read from Eq. (31) the following
approximate equality

Vg = /0 r2drje(kr)v(r)je(kr) ~ ——% sin d, cos . (32)
This way approximate phase shifts can be calculated for the potentials available, which are
the screened Coulomb potential as mentioned above and the two corresponding square well
potentials. The Zy values obtained this way for the screened Coulomb potential are represented
by the stars in Fig. 3, while the square well results are given by the solid and broken lines. It is
seen that Z4 values for 1/\ square wells are smaller than those for the 2/X square wells, which
is in line with earlier results. Further, again all Z4 values obtained this way lie above a value
of 0.6.

Taking everything together, these results are in agreement with earlier findings, which
gave Zq = 0.75 £ 0.15. Therefore, the present results, which are the first being based on the
use of ab initio constructed hydrogen potentials, can be seen of a support for these findings.
Apparently, by now there is an overwhelming evidence for a non-negligible screening, but a
complete screening is really out of the picture.

Conclusions and perspectives

After falsifying the famous claim of Bosvieux and Friedel of a complete screening of the direct
force [6, 9], now the other claim, put forward by Turban et al., has been shown to be not valid
[7]. By this, from now on both Zy3 = 0 claims can be discarded, and one can say indeed: the
direct force controversy in electromigration exit. In this respect Zwerger’s remark, that the total
force on the impurity is proportional to the additional resistivity it causes, is rather confusing
[17]. Zwerger studies the electronic charge distribution around a fixed impurity induced by
a steady electron flow. He finds an electronic backflow, and it would be interesting to study
its relationship with the backflow calculated in the present work, see Fig. 1. In addition, he
calculates the force on the impurity due to the steady flow, given by his Eq. (15), which is
equivalent to Eq. (7) above. By that it is clear that he just considers the wind force, and his
remark holds for the wind force anyhow. In his treatment an applied electric field is not in the
picture, by which he does not even touch on the direct force problem.

Further, explicit calculations of the direct valence Zy3 are done, this time based on the use
of ab initio constructed hydrogen potentials, and no longer on model square well potentials. It
appears that the predictions in the literature, giving Z4 = 0.75 & 0.15, are reliable [8, 10].

A few problems are left in the field. For hydrogen in niobium a value Z3 < 0.5 has been
measured, while for hydrogen in tantalum values have been measured which are significantly
larger than unity [18, 19]. This has never been explained, but up to now only calculations are
available for hydrogen in a jellium. In a proper approach one would have to do calculations
in which the metallic embedment of the hydrogen is accounted for. It has been shown earlier
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that in transition metals strong multiple scattering effects can lead to surprising results for the
wind force [20]. Similarly, for Z4 a first attempt would be to represent the migrating impurity
including its metallic environment by a finite cluster. Initial hints for a possible approach have
been given already [16]. Such a program will the subject for further research.
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