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The amount of screening of a proton in a metal, migrating under the influence of an applied electric field, is

calculated using different theoretical formulations. First the lowest order screening expression derived by Sham

�Phys. Rev. B 12, 3142 �1975�� is evaluated. Contrary to Sham, who estimates the screening to be negligible,

we find a finite screening of the order of 15%. In addition, “exact” expressions are evaluated which were

derived according to different approaches. For a proton in a metal modeled as a jellium the screening appears

to be 15±10%, which is neither negligible nor reconcilable with the controversial full-screening point of view

of Bosvieux and Friedel �J. Phys. Chem. Solids 23, 123 �1962��. In reconsidering the theory of electromigra-

tion, a new simplified linear-response expression for the driving force is shown to lead to essentially the same

result as found by Sorbello �Phys. Rev. B 31, 798 �1985��, who has used a rather complicated technique. The

expressions allow for a reduction such that only the scattering phase shifts of the migrating impurity are

required. Finally it is shown that the starting formula for the driving force of Bosvieux and Friedel leads

exactly to the zero-temperature limit of well-established linear response descriptions.

DOI: 10.1103/PhysRevB.74.045111 PACS number�s�: 66.30.Qa, 61.72.Ji, 72.10.Fk

I. INTRODUCTION

The amount of screening of a hydrogen atom in a current

carrying metal has been the subject of a long-standing con-

troversy. In brief, considering the driving force F on such an

atom as being composed of two contributions, a direct force

Fd due to the charge of the proton, and a wind force Fw due

to the transfer of momentum of the current carrying electrons

to the proton, so

F = Fd + Fw = �Zd + Zw�eE = Z*eE , �1�

Bosvieux and Friedel1 found a complete cancellation of Fd,

implying full screening of the proton charge and only a wind

force being operative, while most other researchers in the

field were in favor of at most a very limited screening.2 Ac-

cording to the convention in electromigration theory, the

forces in Eq. �1� are written as being proportional to corre-

sponding valences and the applied electric field E. The

effective valence Z* is the measurable quantity. The wind

force has been calculated reliably for many systems with

ab initio methods for the electronic structure. This has

been done not only for migration of interstitials such as hy-

drogen, but also for substitutional impurities, including

self-electromigration.2–4

Electromigration is a complicated phenomenon. Its com-

plexity has nothing to do with the many-body nature of the

electron-electron interaction. In all electronic structure calcu-

lations of pure metals and of alloys, the electron-electron

interaction is accounted for using the local density approxi-

mation in a standard way, and this is applied in all theoretical

treatments of electromigration as well.4,5 This implies that all

theory of electromigration is one-electron theory. We return

to this in Sec. II. The complexity of electromigration comes

from the fact that both electron transport and ionic transport

have to be taken into account. The electron transport leads to

the wind force on the migrating ion. Another contribution to

the driving force leading to migration is the direct force.

In view of the long history of the controversy regarding
the direct force we mention just a few key papers. The linear
response expression for the driving force derived by Kumar

and Sorbello6 was considered as a sound starting point for

the resolution of the controversy. From an evaluation to low-

est order in the impurity potential Sham concluded to a neg-

ligible screening.7 Using an evaluation up to all orders in the

potential, in 1985 Sorbello found a screening of at most

25%.8

Experiments done in the seventies of the previous century

had not been able to determine the value of the direct valence

of hydrogen in pure metals unambiguously.2 After that neg-

ligible screening was measured in V�H� and Ta�H�, but in

Nb�H� a screening of the order of 50% was found.9 Carefully

designed experiments on NbxV1−x�H� strongly suggest that

Zd might be close to the value of +1 �Ref. 10�. Further,

comparison of measured Z* values in a number of metal

hydrides with state-of-the-art calculations of Zw led to the

conclusion that Zd has a value close to unity.11 All this led to

a consensus at that time.

Nevertheless, Friedel kept defending that only a wind

force was operative, the more so as Turban et al. had given

another support for that point of view.12 The confusing fea-

ture of the latter work is that their starting formula is a well-

established form of a linear response expression. But these

authors do not evaluate that expression. On the contrary, they

just use a proportionality argument regarding the expression

for another physical quantity. Another support for the full-

screening point of view was given by the present author.13

However, that result was considered to be valid in the low

temperature limit only,14 and this limit is a rather academic

one in view of the relatively high temperatures at which elec-

tromigration experiments are carried out. More recently

Ishida predicted a screening ranging from 0 to 100%, but his

results were depending sensitively on the electron density of

the host metal.15

We will present a thorough study of the amount of screen-

ing. We start with summarizing the main ingredients of the
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linear response description of the driving force in Sec. II.

Although all in this section is standard, including the transi-

tion from a many-body expression to a one-electron formula,

this section serves as a reference point for further develop-

ments in the core of the paper. After that first Sham’s screen-

ing expression is evaluated numerically for a number of

model potentials representing the impurity. The results, given

in Sec. III, do not support Sham’s conclusion of a negligible

screening, but they are in line with Sorbello’s result of a

screening of 10–30%.

Second, in Sec. IV we will present a very simple evalua-

tion of the linear response description. This evaluation is

supplementary to the evaluation given by Rimbey and

Sorbello8,16 and furthermore much more straightforward. The

two descriptions are compared in Sec. V. In Sec. VI it ap-

pears to be possible to reduce the final expression for the

direct force valency Zd to a form containing just the scatter-

ing phase shifts of the migrating impurity potential. Numeri-

cal results will be presented in Sec. VII, and compared with

Sorbello’s results.8

In Sec. VIII we will show that the starting expression of

Bosvieux and Friedel for the driving force is precisely the

zero temperature limit of well-established linear response ex-

pressions. This is found by describing the switch on of the

electric field properly and by giving credit to the Hermitian

property of the Hamiltonian of the unperturbed system. It

implies that the old claim that only a wind force is operative,

is false. Conclusions and suggestions for further research are

given in Sec. IX.

II. LINEAR-RESPONSE DESCRIPTION

The linear response expression for the force on an impu-

rity with chemical valency Zi at a position R1 due to an

applied electric field is given by

F = ZieE − ieE��
0

�

dte−atTr���H��Fop�t�,�
j

r j
�	


� Fd�
bare

� + Fw
total. �2�

The first term clearly is the direct force on the bare ion. The

Cartesian label � runs from 1 to 3, the infinitesimally positive

number a represents the adiabatical switch on of the electric

field represented by the potential

�V�t� = eEeat · ��
j

r j − Zi�
�

R� � �Veat, �3�

with j running over the electrons and � over the ions, and the

operator ��H� is the grand-canonical density depending on

the system Hamiltonian H. The force operator contains the

electron-impurity potential

Vei = �
j,�

v�r j − R�� � �
j,�

v j
�, �4�

which is part of the system Hamiltonian, and is given by

Fop � − �R1
Vei = − �

j

�R1
v�r j − R1� � �

j

f j
1. �5�

Its time dependence refers to the Heisenberg representation

Fop�t� � eiHtFope
−iHt. �6�

It appears that the second term in Eq. �2�, which is of course

supposed to lead to the wind force, also contains some

screening contribution to the direct force. The controversy

has not to do with the fact that there is a screening contribu-

tion in Fw
total, but it is as to the magnitude of that screening

contribution that people do not agree. The expression pub-

lished by Kumar and Sorbello �Ref. 6�,

Fw
total = −

i

a
E��

0

�

dte−atTr���H��Fop�t�,J
��� , �7�

follows simply and straightforwardly from a partial integra-

tion of Eq. �2� with respect to the time. The current vector is

defined

J = ie��
j

r j,H	 = − e�
j

p j

m
= �

j

j j . �8�

The driving force �2� can be decomposed as follows:

F = ZieE + Fw
total = ZieE + Fw

scr + Fw
BF = �Zi + Zscr + Zw�eE

= �Zd + Zw�eE , �9�

containing the result of Bosvieux and Friedel for the wind

force Fw
BF and a screening contribution.1 In all treatments

available Fw
BF can be written in its general form �Refs. 4, 7,

and 8�

Fw
BF = −� �n�r��R1

v
1d3r, with v

1 = v�r − R1� . �10�

The precise explicit form depends on the level of approxi-

mation used to represent �n�r�, which is the local deviation

of the electron density from its unperturbed host value due to

the applied field and the presence of the impurity. It is worth-

while to point out that the form �10� is a one-electron expres-

sion, completely in line with standard treatments of elec-

tronic and transport properties in condensed matter,

particularly in metals and metallic alloys. In these treatments

the local-density approximation �LDA� is made for the elec-

tronic contribution to the potentials used in the description.

In the LDA the electron density, which contains a local direct

part and a nonlocal exchange term, is given a local form.5,17

The LDA, being common to most of the treatments of me-

tallic properties, is used in electromigration theory as well.4

This will be made explicitly below, when the many-body

expression in Eq. �2� is reduced legally to a one-electron

expression, although it is clear that use is made implicitly of

the LDA.18 From now on we will concentrate on Zd.

All previous relevant descriptions have been given for the

electron-impurity system,4 for which the Hamiltonian H can

be written as a sum of single particle Hamiltonians h, so

H = �
j

h j with h = h0 + v = h0 + �
�

v
�. �11�

This form for H is standard for all studies of the electronic

structure in condensed matter theory and it is common

knowledge that its use implies the application of the

LDA.5,17 The unperturbed one-electron Hamiltonian h0
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stands for the Bloch Hamiltonian, which contains the kinetic

energy of the electron and the periodic potential of the me-

tallic atoms in the lattice. For a jellium model, that periodic

potential is smeared out to a constant positive background,

and one obtains effectively a free-electron Hamiltonian. The

full Hamiltonian h contains in addition the potential of the

alloying impurities, which may be either substitutional impu-

rities or interstitial impurities, such as hydrogen. For the

present problem the form �11� allows for a reduction of the

many body expression in Eq. �2� to the following one-

electron expression:

Fw
total = − ieE��

0

�

dte−attr��r�,n�h��f1�t�� , �12�

where n�h� is the Fermi-Dirac distribution function in opera-

tor form

n�h� =
1

e��h−�F� + 1
. �13�

It has been shown explicitly that if in the right-hand side of

Eq. �12� the statistical operator is replaced by this operator

for the free particle system, so n�h�→n�h0�, the Bosvieux-

Friedel wind force expression Fw
BF arises.13 That means that

the screening part is given by

Fw
scr = − ieE��

0

�

dte−attr��r�,n�h� − n�h0��f1�t�� = ZscreE .

�14�

The screening valency Zscr is defined

Zscr = −
i

3
�

0

�

dte−attr��r,n�h� − n�h0�� · f1�t�� , �15�

in which the factor of
1

3
comes from the fact that all three

terms in the inner product of the vectors r and f1 contribute

equally. In all further evaluations the metallic host is mod-

eled by a jellium, which is the only model used so far in the

literature for the study of the direct force problem. This

means that the electrons are perturbed by the random distri-

bution of impurities only. Following Sham7 we now first

consider the result to lowest �second� order in the impurity

potential v.

III. EVALUATION OF SHAM’S EXPRESSION

The evaluation of Eq. �15� to lowest order in v requires

the expansion of the statistical operator n�h�−n�h0� in v,

n�h� = n�h0� − n�h��
0

�

dsesh
ve−sh0�1 − n�h0�� , �16�

while in the time dependence of f1 one can replace h by h0.

One obtains

Zscr = −
4

3m
�
kk�

�k2 − k · k��
�vkk�

�2

��k − �k�
�2 + a2� �nk

��k

−
nk − nk�

�k − �k�

 ,

�17�

where k is a free electron wave vector and �k is

the corresponding energy. The matrix element

�k � �r� ,n�h�−n�h0�� �k�� is most easily evaluated if one real-

izes, that it is equal to i� �

�k�
+

�

�k��
��k �n�h�−n�h0� �k��. Follow-

ing Sham and Sorbello8 the potential v refers to the migrat-

ing impurity only. Sham stored part of the presence of the

impurities through the replacement a→�−1, � being the

transport relaxation time due to the impurities, which can be

justified by an average over the distribution of the impurities

in the time dependence of the force operator. Both Sham and

Sorbello were able to make their complete derivations after

taking the T→0 limit only. It has been shown that Eq. �17�
reduces to Sham’s expression after taking that limit.19

A numerical evaluation of Zscr becomes possible if one

employs the spherical wave expansion for a plane wave, con-

verts the summations over the wave vectors to integrals, and

carries out the angular integrals over the directions of the

wave vectors. After using the relation between k2 and the

energy �k one ends up at

Zscr = −
4

3	2m
�

0

�

d�k�
0

�

d�k�

�nk

��k

−
nk − nk�

�k − �k�

��k − �k�
�2 + a2�

�

f��k,k�� ,

�18�

in which the function f��k ,k�� is defined

f��k,k�� = �k
��k�

v��k�,k���2 � + 1�kv��k�,k�

− 2�� + 1�k�v�+1�k�,k�� , �19�

containing the information about the ion potential through

v��k�,k� = �
0

�

r2drj��k�r�v�r�j��kr� . �20�

The integrand has to be treated with care when �k�
=�k, be-

cause then the denominator attains the value a2 which would

imply “singular” behavior. However, precisely then the nu-

merator becomes zero, because lim�k�
→�k

�nk−nk�
� / ��k−�k�

�

→
�nk

��k
. The crucial part of the integrand lies in the square

around the point ��k ,�k�
�= ��F ,�F�. In studying the Zscr inte-

gral it appears that in that square one has to keep the Fermi-

Dirac distribution function in its finite temperature form. We

could not obtain a reliable stable numerical result by using

Sham’s T→0 expression. The result of a numerical evalua-

tion for different ion potentials is shown in Fig. 1. We used a

screened Coulomb potential
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v�r� = −
Zie

2e−
r

r
while vk�k �

1

8	3 � d3rei�k−k��·r
v�r� ,

�21�

with Zi=1 representing a proton in a jellium and the inverse

screening length 
 given by the Thomas-Fermi expression

�Ref. 20�


2 = 4	e2N��F� with N��� =
m�2m�

	2
→ vkk = −

Zi

8	3N��F�
.

�22�

In addition square well potentials were employed in the same

spirit as Sorbello did.8 The width r0 of the square well po-

tential was chosen to be equal to the screening length 1/

and twice as large. The corresponding well depth v0 was

determined by the condition v0 /vc=0.999, where vc

=	2 /8mr0
2 is the critical value of the well depth for which a

bound state forms. For further details, see Ref. 8. The value

of 
 is determined by the Fermi energy. While Sorbello

chose five values for the Fermi energy, typical for metals

ranging from sodium to aluminum, we have done the calcu-

lation for a whole range of Fermi energies. The results are

plotted as a function of the Fermi wave number kF. The kF

values of sodium and aluminum are indicated.

Because 
 increases monotonically with the Fermi energy,

the range of the corresponding screened Coulomb potential

decreases with increasing kF, whose reduction in strength is

seen clearly in the solid curve. In Fig. 2 the vkk
2 curves are

plotted for the three potentials. A clear decrease is seen for

the Coulomb potential, and a rather flat behavior for the

square well potentials, while the one with 2/
 is markedly

stronger than the one with the smaller width. Apparently, the

screening to second order in the impurity potential is not

negligible at all, but on the average as large as 15±10%. As

a guide for the eye we gave the average of Zscr for the three

potentials as a dotted line.

For security we evaluated an alternative expression for

Zscr, given by

Zscr = −
4

3m
�
kk�

�k2 − k · k���vkk�
�2

nk − nk�

�k − �k�

��k − �k�
�2 − a2

���k − �k�
�2 + a2�2

.

�23�

This expression follows if Eq. �15� is modified such that the

dipole operator r commutes with the force operator f1�t� in-

stead of with the statistical operator. While Zscr given by Eq.

�17� reduces to Sham’s expression after taking the T→0

limit, such a proof is not available for Zscr given by Eq. �23�.
On the other hand, the two expressions �17� and �23� are

equivalent, being related to each other through a partial in-

tegration for the derivatives with respect to the k and k�

vectors. The alternative for Eq. �18� becomes

Zscr = −
4

3	2m
�

0

�

d�k�
0

�

d�k�

nk − nk�

�k − �k�

��k − �k�
�2 − a2

���k − �k�
�2 + a2�2

��
�

f��k,k�� . �24�

If one takes proper care of the higher sensitivity of the ex-

pression �24� to the choice of the infinitesimal parameter a

the results turn out to be the same. It can be taken relatively

small, much smaller than a typical value of 0.01 for the in-

verse transport relaxation time. In fact, it is the mesh of the

integration that determines the lower limit of a. For the ex-

pressions �18� and �24� it was never larger than 0.00015 and

0.005, respectively. On the other hand, for a=0.01 the

screening represented by the curves in Fig. 1 reduces by at

most 2%.

IV. REDUCTION OF LINEAR-RESPONSE FORMULA

FOR THE SCREENING

The evaluation of the linear-response formula �15� to all

orders in the impurity potential can be achieved by restrict-

ing the evaluation to a system with one impurity in a jellium,

FIG. 1. The amount of screening represented by Zscr according

to Eq. �18�, for the screened Coulomb potential and for two square

well potentials.

FIG. 2. vkk
2 plotted as a function of kF, for the two square well

potentials and the screened Coulomb potential.
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which is in accordance with earlier work by others.8 In that

case f1= i�p ,h�= i�p ,h0+v
1�. By writing Eq. �15� in terms of

eigenstates of h→h0+v
1, labeled by q and q�, one can carry

out the time integral and finds

Zscr =
i

3
�
qq�

�q��r,n�h� − n�h0���q�� ·
�q − �q�

�q�
− �q + ia

pq�q

=
i

3
�
qq�

�q��r,n�h� − n�h0���q�� · �− 1

+
ia

�q�
− �q + ia

pq�q = −
i

3
tr��r,n�h� − n�h0�� · p�

+
i

3
�
qq�

�q=�q�

�q��r,n�h� − n�h0���q�� · pq�q. �25�

The first term in the last line reduces to −Zi

because itr��r� ,n�h�−n�h0��p��= itr��n�h�−n�h0���p� ,r���
= tr�n�h�−n�h0����,�=Zi��,�. One arrives at

Zscr = − Zi + Zcorr

with

Zcorr �
i

3
�
qq�

�q=�q�

�q��r,n�h� − n�h0���q�� · pq�q. �26�

In view of Eq. �9� this would imply a correction term Zcorr

=Zd due to the cancellation of the bare direct valency Zi. The

step of subtracting and adding an ia term in the numerator in

the second line of Eq. �25� may look somewhat artificial, and

the ia factor creates the impression to lead to a zero result in

the a→0 limit. We have to admit that, in earlier work, we

overlooked this rather hidden trap. It is to the merit of Sor-

bello that he discovered the trap.18 At that time we could not

go along with Sorbello’s suggestion yet.21 But after a rigor-

ous search we now follow him by noting, that for the �q

=�q�
terms in the third line the ia factor cancels, and the

remaining terms give a finite contribution.18

Sorbello8 starts from a result obtained by Rimbey and

Sorbello16 through an evaluation of Eq. �7� and finds after

some rewritings for Zd

Zd = −
2

3	m
Im tr�p2�G��F� − G0��F��� . �27�

The single particle Green’s function G��� for one impurity in

a jellium, with h=h0+v
1, and the free electron Green’s func-

tion G0��� are given by

G��� =
1

� + ia − h
and G0��� =

1

� + ia − h0

with

h0 =
p2

2m
. �28�

This form for Zd is Sorbello’s Eq. �12� and it implies a can-

cellation of Zi present in his Eq. �7�. In order to distinguish

our result for Zd from Sorbello’s Zd we keep the notation

Zcorr.

V. COMPARISON OF THE TWO DESCRIPTIONS

While the description by Rimbey and Sorbello is rather

involved and the result �26� is obtained in a few lines, it is

worthwhile to compare the final expressions. We first evalu-

ate Zcorr to lowest order in the impurity potential, for which

we take a screened Coulomb potential, Eq. �21�. By using

Eq. �16� and the equality

�r,n�h�� = −
i

m
�

0

�

ds n�h�eshpe−sh�1 − n�h�� , �29�

in which the electron mass m=
1

2
in atomic units, one finds

straightforwardly for Zcorr
0

Zcorr
0 =

i

3
�

k

�k��r,n�h� − n�h0���k� · k

= − 4	��Fvkk = Zi � Zi�pot� , �30�

in which a quantity Zi�pot�=−4	��Fvkk is defined to be used

below. For the screened Coulomb potential this quantity is

equal to Zi=1, but this is not the case for other potentials.

This result from an explicit calculation follows also if one

writes the sum over the free space states �k� as a trace and

uses the equality given in the sentence just below Eq. �25�.
Similarly one finds for Sorbello’s Zd to lowest order in the

impurity potential, writing the trace in Eq. �27� in terms of

free space states labeled by k,

Zd
�0� = −

2

3	m
Im� d3kk2Gk

0��F�vkkGk
0��F� = − 4	��Fvkk = Zi.

�31�

This is obtained by using the following two equalities,

�

��k

Gk
0��� =

�

��k

1

� − �k + ia

= Gk
0���Gk

0��� and lim
a→0

Im Gk
0��F� = − 	���F

− �k� . �32�

Apparently, to lowest order in the impurity potential the

two final expressions Zcorr and Zd are equal and they repro-

duce the bare valency of the migrating ion. Although the

complete expressions are not equal, an “almost” equality can

be derived. We rewrite Zcorr by applying Eq. �29� both for h

and h0. After inserting a complete set of free electron states

in the h0 term in Eq. �26� and carrying out the integral over

s, one finds
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045111-5



Zcorr =
�

3m
�
qq�

�q=�q�

�nq�1 − nq�pqq�
− �

k�

nk�
�1 − nk�

�

��q�k��k��k��q��	 · pq�q →

−
1

3	m
�
qq�

�q=�q�

�Im Gq��F�pqq�
− �

k�

Im G
k�

0 ��F�

��q�k��k��k��q��	 · pq�q = −
1

3	m
Im �

qq�

�q=�q�

�q�p�G��F�

− G0��F���q�� · pq�q. �33�

In the transition from the first to the second line the T→0

limit was taken, for which �nq�1−nq�=−
�

��q
nq→���q−�F�

=−
1

	 Im Gq��F�. Both Sham and Sorbello give their elabo-

rated expressions in this T→0 limit. The similarity of this

last line with Sorbello’s Zd, Eq. �27�, is striking. The factor

of 2 reflects whether the electron spin degeneracy has been

accounted for explicitly or not. In fact, if in the last line of

Eq. �33� the states q and q� are replaced by the unperturbed

ones k and k�, it reduces to Sorbello’s expression. This im-

plies an intriguing equality indeed, and it shows that the two

descriptions are closely related.

VI. THE CORRECTION TERM IN TERMS

OF PHASE SHIFTS

For the evaluation of the correction term Zcorr as it is

defined in Eq. �26� one needs the states �q�. These states are

the eigenstates of a system with one impurity in free space. It

is known that the scattering states �k� for this system, which

have a one-to-one correspondence to the free space states �k�,
are exact solutions of the Schrödinger equation for one im-

purity in free space as well. It appears that the evaluation of

Zcorr becomes relatively simple if one uses the scattering

states instead of the true eigenstates. We return to this point

below.

The expansion of the scattering state �r �k��k�r� in

terms of spherical harmonics is given by

k�r� =
4	

��
�
L

i�YL
*�k̂�R��r,k�YL�r̂� . �34�

The angular momentum label L combines the labels � and m,

so L� �m, and R��r ,k� is the radial solution of the

Schrödinger equation at the energy �k for a spherically

symmetric potential v centered at the origin. For r

outside the range of the potential R��r ,k� can be written in

terms of the scattering t matrix t�=−
1

k
sin ��exp�i��� as

j��kr�− ikt�h
�

+�kr�, where �� are the phase shifts. This means

that for a plane wave R��r ,k�→ j��kr�. The box normaliza-

tion in the system volume � induces a discrete set of k

values. In the properties to be presented below a delta func-

tion normalization will be used, which means that in Eq. �34�
the system volume � has to be replaced by 8	3. Using the

expansion Eq. �16�, the equality �k� �v �k�= tk�k which holds

for scattering states �q�→ �k�, and the overlap property for

scattering states

�k��k� =
��k − k��

k2 �
L

YL�k̂��YL
*�k̂��1 − ikt�� , �35�

one finds for Zcorr

Zcorr = −
4

3	m
�

0

�

k3dk� �

��k

���k − �F�	F��k�

=
2

	
�F��F� +

2

3
�F

3/2 �

��F

F̄��F�	 , �36�

in which the function F��k� is given by

F��k� =
1

4
�

�

�� + 1��sin 2�� + sin 2��+1��cos2��� − ��+1� + 1� ,

�37�

and F̄��k�� 1

k
F��k�. Crucial steps of the derivation of Eq.

�36� are given in the Appendix. This expression can be

evaluated simply, because it is just a function of the phase

shifts of the impurity potential at the Fermi energy. Zcorr as it

is given by Eq. �36� has to be compared with the lowest

order expression, obtained by the replacements �q�→ �k� and

�q��→ �k��. For the sake of a proper comparison this expres-

sion has to be evaluated in a similar way, by the use of

scattering states. This way one obtains

Zcorr
0 = −

4

3	m
�

0

�

k3dk� �

��k

���k − �F�	F0��k�

=
2

	
�F0��F� +

2

3
�F

3/2 �

��F

F̄0��F�	 , �38�

in which the function F0��k� is given by

F0��k� =
1

2
�

�

�2 � + 1�sin 2�� = �
�

�2 � + 1�sin �� cos ��,

�39�

and F̄0��k�� 1

k
F0��k�. The right-hand sides of Eqs. �38� and

�30� can have different numerical values, because the two

elaborations are different in character. Comparison of these

numerical values can be considered as a test of the error

made in using scattering states instead of the true eigenstates.

Another test of this error is obtained by evaluating the sim-

plified lowest order result for Zcorr explicitly, to be denoted as

Zcorr
00 , using the expansion �16�. One finds

Zcorr
00 = tr�n�h� − n�h0�� =

2

	
�

�

�2 � + 1�sin �� cos ��

=
2

	
F0��k� �

2

	
�

�

�2 � + 1��� = ZF, �40�

in which ZF stands for the Friedel sum. The inequality in Eq.

�40� must be attributed to the use of scattering states instead

of the true eigenstates. The difference between these two

types of states has been stressed by Fenton22 and commented
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on by the present author.23 A scattering state is prepared such

that it is an unperturbed state at t=−�, which develops under

the influence of a scattering potential located at some posi-

tion in the system. An eigenstate has to be constructed using

the boundary conditions of the system in addition to the

properties of the potential. In terms of scattering theory,

eigenstates contain the influence of backscattering by the

boundaries in addition to the information about the scattering

by the potential. It is clear that the third member of Eq. �40�
reduces to ZF in the small phase-shifts limit ��→0.

Sorbello’s equation for Zd, Eq. �27�, can be evaluated

through the use of scattering states as well. We first give the

form corresponding to the eigenstates of h, denoted as usual

by �q�, followed by the result obtained by using scattering

states.

Zd = −
2

3	m
Im�

q

�
k�

�q�k��k�
2G

k�

0 ��F��k��v�q�Gq��F�

→
4

3	

�

��F

�
0

�

�k
3/2

d�k���F − �k�F̄
0��k� =

4

3	

�

��F

�F
3/2F̄0��F� .

�41�

As above, for scattering states the potential matrix element

becomes equal to the t matrix element tk�k. The energies �k

and �q are equal, being connected by a delta function as

shown in Eq. �35�. Interestingly, this rewritten Zd is equal to

our Zcorr
0 given by Eq. �38�. This again shows the close rela-

tionship between the results obtained through the simplified

approach presented here and Sorbello’s results.

Sorbello calculated Zd of Eq. �27� using the square well

potentials described in Sec. III. To that end he derives his

rewritten form Eq. �17�, which we reproduce in a slightly

different notation as follows:

Zd =
4v0kF

3	
�

0

r0

r2dr�
�

�2 � + 1�„R
�

2�r,kF� − j
�

2�kFr�…

+
4�F

3	
�

�

�2 � +1 �
���

��
��F

+
4kFv0r0

3

9	
. �42�

In the derivation has been used, that
p2

2m
=h−v=h−�F+�F

−v, G−G0=GvG0, �h−�F�G=−1, −Im Tr�G−G0�=���2�

+1�
���

�� ��F
, Im G0�r ,r�=−kF�LjL

2�r�, and Im G�r ,r�=

−kF�LRL
2�r�, with RL�r��R��r ,kF�YL�r̂�. For r�r0 the radial

solution R��r ,kF�� j��k
v
r�, with k

v
=�kF

2 +v0. For reasons of a

proper comparison we evaluated Zd according to Eq. �42� up

to �=2, because Sorbello restricted himself to �max=0.

VII. NUMERICAL RESULTS

The expressions obtained will be evaluated for the same

square well model potentials as were used in Sec. III, in that

employing a slight generalization of the potentials used by

Sorbello.8 Results for Zd /ZF and Zcorr /Zcorr
0 are shown in Fig.

3. Because the Friedel sum for the model square well poten-

tials is rarely equal to unity, the use of ratios gives the proper

measure for the screening, in which we follow Sorbello.

It is seen that for the stronger potentials, with r0=2/
,

Sorbello’s boldly dashed curve lies somewhat lower than the

dashed curve for the present description, while they display

almost equal results for the higher kF values. The curves for

the weaker potentials lie lower than those for r0=2/
. Al-

though they differ considerably for smaller kF values, the

curves approach each other for higher kF. Both results imply

a decrease of the inaccuracy related to the �q�→ �k� replace-

ment in the present description for states with increasing k

values. This is reasonable, because larger k values corre-

spond to smaller wave lengths, which probe the scattering

potential more precisely, while the boundary effect de-

creases. As a guide for the eye the average for the two well

widths are drawn as dotted lines. From the present descrip-

tion one comes to a direct valency of 0.85±0.15 on the av-

erage, while this is 0.91±0.10 for Sorbello’s description. So

it appears that the �q�→ �k� replacement is not too crude in

determining a measure for the amount of screening. The

screening mentioned by Sorbello is based mainly on the

r0=1/
 potentials, because for these potentials his restriction

to �max=0 is reasonable. If we correct for the higher � values

we find 0.82 for Zd /ZF in aluminum instead of his 0.75. He

used the latter value in mentioning a screening of 25%. For

the sake of completeness we remark, that if one would com-

pare the boldly dashed curve with the values given in Sor-

bello’s Table II one would observe considerable differences.

This is due to the fact that for the r0=2/
 potentials the

�=1 and 2 terms contribute significantly. Taking everything

together the available models and descriptions end up at a

screening between 5 and 30%. Comparing with the largely

metallic-density dependent result of Ishida, covering the en-

tire range of no screening to complete screening, the present

result can be considered as rather conclusive, in that com-

plete screening is excluded.15

In order to get some more insight in the kF dependences

shown in Fig. 3 we display the quantities Zcorr
0 , Zi�pot�, and

ZF in Fig. 4. It is seen that all curves have a positive slope,

apart from the one for ZF for the weaker r0=1/
 potential.

This is certainly related to the seemingly deviant Zd /ZF curve

in Fig. 3 and the fact that the Zd /ZF curves have been ob-

FIG. 3. Zd /ZF and Zcorr /Zcorr
0 plotted as a function of kF, for the

two square well potentials.
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tained by an accurate numerical evaluation of Eq. �42�, while

the Zcorr /Zcorr
0 results “suffer” from the �q�→ �k� replace-

ment. The effect of this replacement is larger for the weaker

potential, which can be seen from both Zcorr /Zcorr
0 curves in

Fig. 3 and the Zcorr
0 curves in Fig.4. This is understandable if

one realizes that the effect of the potential on the wave func-

tions increases with its strength, while the effect of the

boundaries remains unchanged. Further we observe that Zcorr
0 ,

Zi�pot�, and ZF lead to different curves. The difference be-

tween Zcorr
0 and Zi�pot� as shown in Fig. 4 is certainly due to

the �q�→ �k� replacement. However, Eq. �30� implies that

for the screened Coulomb potential one should find Zi�pot�
=Zcorr

0 =Zi=ZF=1. This means that a difference between

Zi�pot� and ZF uncovers some limitation of the use of the

model square well potential. Although the differences in

shape of the three potentials are known, in Fig. 5 we show

their shapes for a certain kF value, for which we choose a

value in the middle of 0.7.

VIII. THE FORCE EXPRESSION OF BOSVIEUX

AND FRIEDEL

The starting expression of Bosvieux and Friedel for the

driving force is

FT=0 = − ����R1
�Vei + �V���� , �43�

in which the state ��� is a solution of the Schrödinger equa-

tion for the system in the presence of an applied field. This

means that one has to solve the time dependent Schrödinger

equation

i
���t�

�t
= H�t���t� � �H + �V�t����t� . �44�

The subscript T=0 is added by the present author in order to

distinguish this force from the force given in Eq. �2�. The

derivation of Eq. �2�, in which a solution of the Liouville

equation is used, has been given in the literature many times.

Because the approach through the system wave function is

typical for the theory of Bosvieux and Friedel, and because

some questions can be raised about their solution, we give

crucial steps of the derivation. We solve Eq. �44� by using

the interaction representation for ��t�, defined by

�I�t� � eiHt��t� . �45�

The equation for �I�t� becomes

i
��I�t�

�t
= eiHt�V�t�e−iHt�I�t� . �46�

After integrating this equation and using that for t→−� the

system is in the ground state of the unperturbed system

Hamiltonian H, one finds for ��t� linearly in �V,

��t� = − ie−iHt�
−�

t

dt�eiHt��V�t��e−iHt��I�− � �

+ e−iHt�I�− � � . �47�

With �V�t�=�Veat, applying the substitution t− t��s, and

considering an arbitrary time in the present, so t=0, this

becomes

��0� � � = − i�
0

�

dte−�iH+a�t�VeiHt�I�− � � + �I�− � � .

�48�

If one calculates matrix elements with this ���, the factor

e−iE0� in the state ��I�−� �� drops out so that just the ground

state �0� of H remains.

By this one finds for Eq. �43�

FT=0 = − �0��R1
��V��0�

+ i�
0

�

dte−at�0���R1
Vei�e

−iHt�VeiHt�0� + c . c.

= ZieE + i�
0

�

dte−at�0����R1
Vei�,e

−iHt�VeiHt��0� .

�49�

FIG. 4. Zcorr
0 , Zi�pot�, and ZF plotted as a function of kF, for the

two square well potentials.

FIG. 5. v�r� for the three potentials plotted as a function of r.
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Because H commutes with the coordinates R� in �V only the

electron coordinates survive. Using the definition of the force

operator, Eq. �5�, and the Hermitian property of H it is clear

that the time dependence can be applied to Fop as well, and

Eq. �49� can be written as

FT=0 = ZieE − ie�
0

�

dte−at�0��Fop�t�,E · �
j

r j��0� .

�50�

Interestingly, Eq. �50� is precisely the zero-temperature

equivalent of Eq. �2�. This becomes even more clear if one

writes down the form which shows up after the reduction of

Eq. �50� to single particle states denoted by �q�.

FT=0 = ZieE − ie�
0

�

dt e−at�
q

�q��f1�t�,E · r��q� . �51�

The force operator f1 is defined in Eq. �5�. At T=0 the sum

over the single particle states has a sharp cutoff at �q=�F.

The finite temperature equivalent of Eq. �51� can be written

F = ZieE − ie�
0

�

dte−attr�n�h��f1�t�,E · r�� , �52�

in which the Fermi-Dirac distribution n��� has been inserted,

see Eq. �13�. Clearly, Eq. �52� is completely equivalent to

Eq. �12� of the present text. By this, electromigration theory

can be considered as being unified. Apparently, the starting

formula of Bosvieux and Friedel was correct, but these au-

thors did not recognize its precise contents. In fact, they

wrote down surface-integral terms, by this not appreciating

the Hermitian property of the system Hamiltonian. This

property implies that these terms are zero, but their full-

screening results were derived from these terms. In addition,

they missed the power of their starting formula, Eq. �43�, by

taking the a→0 limit in too early a stage of the derivation. A

detailed account of these statements, in which the original

paper is followed as closely as possible, can be read

elsewhere.24

IX. CONCLUDING REMARKS AND PERSPECTIVES

The amount of screening of the direct force on a proton in

an electric-current carrying metal has been shown to lie be-

tween 5 and 25%. By this the full-screening prediction of

Bosvieux and Friedel has been invalidated, completely in

agreement with an earlier result obtained by Sorbello.1,8 On

top of that, the surface integral terms used by Bosvieux and

Friedel to derive their full-screening result appear to be zero,

due to the Hermitian property of the Hamiltonian. Interest-

ingly, it has been shown explicitly that the starting expres-

sion of Bosvieux and Friedel for the driving force is the

zero-temperature limit of all linear-response expressions

used in the literature since their introduction by Kumar and

Sorbello.6

All existing calculations use a jellium model for a metal,

or are not applicable to transition metals.15 In view of the

description presented it becomes feasible to account for real

metallic effects. These effects have been accounted for in the

calculations of the wind force to a large detail,3 but for the

direct force this was much too involved up to now.4 Such a

development would be interesting, because this may lead to

an explanation of a measured result which has not been un-

derstood yet. For most hydrides a direct valency for the hy-

drogen has been measured which is of the order of unity.

However, in Nb�H� a direct valency was found of about 0.44.

Such a deviating value may arise from multiple scattering

effects of the electrons around a proton surrounded by me-

tallic atoms, which can be accounted for in a finite-cluster

description. It is worthwhile to investigate this possibility,

because in the development of the description of the wind

force surprising positive values for the wind valence in V�H�
and Nb�H� were found, which were in agreement with the

experiment.25 The surprise comes from the fact that in a sys-

tem composed of a finite cluster embedded in a jellium the

electron dispersion relation is still free electronlike, from

which one would expect a negative wind valence. The cal-

culated result must be due to the rather strong multiple scat-

tering effects, which were accounted for explicitly. A finite

cluster description for the direct valency would be a straight

generalization of the impurity in a jellium description imple-

mented so far. This is a feasible development if one uses the

simplified treatment presented above, of which it has been

shown that the expressions can be evaluated in terms of the

scattering phase shifts of the constituent atoms.
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APPENDIX: CRUCIAL STEPS IN THE DERIVATION

OF EQ. (36)

For the evaluation of Zcorr defined in Eq. �26� one needs

the momentum matrix element pq�q and the matrix element

of the commutator with the statistical distributions. For pq�q

one writes

pq�q =
�4	�2

8	3 �
LL�

i�−��YL�
�k̂��YL

*�k̂�� d3rR
L�

* �r�pRL�r� ,

�A1�

in which Eq. �34� with �→8	3 has been used for the wave

functions and RL�r��R��r ,k�YL�r̂�. If one represents the

scattering potential by a square well with depth v0 the inner

radial solution is a Bessel function as well, so R��r ,k�
=A�j��k

v
r�, with k

v
=�k2+v0, and one finds

� Y
L�

* �r̂�pRL�r�dr̂ = i��−�k
v
DL�LR����r,k� , �A2�

in which the equality

� Y
L�

* �r̂�pjL�r�dr̂ = i��−�kDL�Lj��
�kr� �A3�

has been used and
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DL�L �� dk̂Y
L�

* �k̂�k̂YL�k̂� . �A4�

The double-� label in Eq. �A2� refers to the fact that the

factor A� is not changed by the momentum operation and the

angular integration, so that

k
v
R����r,k� = k

v

A�

A��

R��
�r,k� → k�j��

�kr� − ikt�h
��

+ �kr�� .

�A5�

If one substitutes Eq. �A2� in Eq. �A1� one obtains

pq�q =
2

	
�
LL�

YL�
�k̂��YL

*�k̂�DL�LI
���

RR �k�,k� �A6�

with

I
���

RR �k�,k� = �
0

�

r2drkrR��

* �r,k��R����r,k� , �A7�

and in which kr=k
v

inside the range of the potential and kr

=k=kF outside of it. Using the equality

�
0

�

r2drj��k�r�j��kr� =
	��k − k��

2k2
, �A8�

it appears to be possible to reduce the integral I
���

RR �k� ,k� to

I
���

RR �k�,k� =
k	

2

��k − k��

k2
Ī

���

RR
, �A9�

in which

Ī
���

RR � 1 − ikt� + ikt
��

*
− 2ikt�ikt

��

*
. �A10�

Now we turn to the other matrix element in Eq. �26�.
Using Eq. �16� one finds

�q��r,n�h� − n�h0���q��

= − �
0

�

ds�q��r,n�h�esh
ve−sh0„1 − n�h0�…��q�� .

�A11�

We remind the reader that in this equation h and v just refer

to the system with one impurity, so to h1 and v
1. Now we use

the equality �29� and the following related equality:

�e�h,r� = −
i

m
�

0

�

dsp�s�e�h �A12�

twice, one time for h and one time for h0. By that the com-

mutator in the right-hand side of Eq. �A11� can be written as

follows:

�r,n�h�esh
ve−sh0„1 − n�h0�…�

= −
i

m
n�h���

0

�

ds�p�s���1 − n�h��esh
ve−sh0

− �
0

s

ds�p�s��esh
ve−sh0 + esh

ve−sh0p�s − �n�h0��

��1 − n�h0�� . �A13�

It will be clear that p�s� in the first and second term refers to

h.

Now we develop the qq� matrix element of this operator

as it occurs in Eq. �A11�. In that we will make use of the

property proven above through Eq. �A6� with �A9�, namely

that the energies �q and �q�
in the matrix element pqq�

are

equal, and of the equality of the energies �k and �q in the

overlap �k �q�, see Eq. �35�. In the first and second term we

have to insert two complete sets, one q set �q���q�� and one

k set �k���k��. In the third and fourth term one needs the

complete k set only. This way one writes for the qq�matrix

element in the left-hand side of Eq. �A11�

�q��r,n�h� − n�h0���q�� =
i�2

m
nq��

q�

�
k�

pqq��1

2
− nq�t

k�k�

*

+ �
k�

t
k�k

*
k��1

2
− nk�	�1 − nk�

�

��k��q�� , �A14�

in which the potential matrix element vqk�
=v

k�q

*
, between an

exact scattered state �q�= �k�, see Eq. �34�, and an unper-

turbed state, a plane wave �k��, has been replaced by the

corresponding t matrix element t
k�k

*
.

By now we have developed the means for bringing Zcorr in

a manageable form. One has to take the inner product of the

matrix element given by Eq. �A14� with
i

3
pq�q and to carry

out the summations. Because the summations are equivalent

to integrals and the absolute values of all k vectors involved

are equal through delta functions, one just has to carry out

the angular integrations. We write for Zcorr in Eq. �26�

Zcorr =
i

3
� dk̂� dk�̂� dk�̂�� dk�̂�q��r,n�h1�

− n�h0���q�� · pq�q, �A15�

in which the right-hand side of Eq. �A14� is supposed to

have been substituted. The angular integration over k̂� ap-

plies to the first term in the right-hand side of Eq. �A14� only.

The product of statistical factors which shows up can be

simplified and in the T→0 limit be written as follows:

− �2nk�1 − nk��1

2
− nk

=
1

2
�

�

��k

�nk�1− nk�� →
1

2

�

��k

���k − �F� . �A16�

If one substitutes this equality, uses Eqs. �A6�, �A9�, �A10�,
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and �A14�, accounts for the factor of 2 due to the spin de-

generacy, and carries out all angular integrations, one finds

for Zcorr of Eq. �A15�

Zcorr =
2

3	m
�

0

�

k2dk
�

��k

���k − �F��
LL�

DLL�
· DL�L�1 − ikt��

�

� �t
��

*
Ī

���

RR
+ t

�

*�k2Ī
���

RR

= −
4

3	m
�

0

�

k3dk� �

��k

���k − �F�	F��k� , �A17�

in which it has been used that

Ī
���

RR
= cos��� − ���

�e−i���−����, �A18�

and

�
mm�

D
LL�

�
D

L�L

�
=

1

3
���„�� + 1����,�+1 + � ���,�−1… .

�A19�

In the right-hand side of Eq. �A17� one recognizes the

second member of Eq. �36�, by which the derivation has

been completed. The derivations leading to Eqs. �38�, �40�,
and �41� are similar, and they are simpler as well.
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